1
|
Pankau C, Cooper RL. Molecular physiology of manganese in insects. CURRENT OPINION IN INSECT SCIENCE 2022; 51:100886. [PMID: 35278758 DOI: 10.1016/j.cois.2022.100886] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Manganese is an essential element for maintaining life. Overexposure to the metal, however, can be toxic to organisms. Given the significant function of manganese in insects, agriculture, and human disease, as well as in the healthy ecology of the planet, the biological activities of manganese in insects needs consideration. Because of the role of manganese as a cofactor for essential enzymes present in different organelles, both over and underexposure to manganese has a multifaceted effect on organisms. At the physiological level, the effects of insect exposure to the metal on enzymatic activities and consequent alteration of insect behaviors are best explained through the metal's role in modulating the dopaminergic system. Despite numerous examples that alterations in manganese homeostasis have profound effects on insects, the cellular mechanisms that ensure homeostasis of this essential metal remain presently unknown, calling for further research in this area.
Collapse
Affiliation(s)
- Cecilia Pankau
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA
| | - Robin L Cooper
- Department of Biology, University of Kentucky, Lexington, KY 40506, USA.
| |
Collapse
|
2
|
Monteiro F, Bernal V, Chaillet M, Berger I, Alves PM. Targeted supplementation design for improved production and quality of enveloped viral particles in insect cell-baculovirus expression system. J Biotechnol 2016; 233:34-41. [DOI: 10.1016/j.jbiotec.2016.06.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/20/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
|
3
|
Wang Y, Xiao D, Wang R, Li F, Zhang F, Wang S. Deep Sequencing-Based Transcriptome Analysis Reveals the Regulatory Mechanism of Bemisia tabaci (Hemiptera: Aleyrodidae) Nymph Parasitized by Encarsia sophia (Hymenoptera: Aphelinidae). PLoS One 2016; 11:e0157684. [PMID: 27332546 PMCID: PMC4917224 DOI: 10.1371/journal.pone.0157684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
The whitefly Bemisia tabaci is a genetically diverse complex with multiple cryptic species, and some are the most destructive invasive pests of many ornamentals and crops worldwide. Encarsia sophia is an autoparasitoid wasp that demonstrated high efficiency as bio-control agent of whiteflies. However, the immune mechanism of B. tabaci parasitization by E. sophia is unknown. In order to investigate immune response of B. tabaci to E. Sophia parasitization, the transcriptome of E. sophia parasitized B. tabaci nymph was sequenced by Illumina sequencing. De novo assembly generated 393,063 unigenes with average length of 616 bp, in which 46,406 unigenes (15.8% of all unigenes) were successfully mapped. Parasitization by E. sophia had significant effects on the transcriptome profile of B. tabaci nymph. A total of 1482 genes were significantly differentially expressed, of which 852 genes were up-regulated and 630 genes were down-regulated. These genes were mainly involved in immune response, development, metabolism and host signaling pathways. At least 52 genes were found to be involved in the host immune response, 33 genes were involved in the development process, and 29 genes were involved in host metabolism. Taken together, the assembled and annotated transcriptome sequences provided a valuable genomic resource for further understanding the molecular mechanism of immune response of B. tabaci parasitization by E. sophia.
Collapse
Affiliation(s)
- Yingying Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Da Xiao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
4
|
Walpole TB, Palmer DN, Jiang H, Ding S, Fearnley IM, Walker JE. Conservation of complete trimethylation of lysine-43 in the rotor ring of c-subunits of metazoan adenosine triphosphate (ATP) synthases. Mol Cell Proteomics 2015; 14:828-40. [PMID: 25608518 PMCID: PMC4390263 DOI: 10.1074/mcp.m114.047456] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/13/2015] [Indexed: 11/06/2022] Open
Abstract
The rotors of ATP synthases turn about 100 times every second. One essential component of the rotor is a ring of hydrophobic c-subunits in the membrane domain of the enzyme. The rotation of these c-rings is driven by a transmembrane proton-motive force, and they turn against a surface provided by another membrane protein, known as subunit a. Together, the rotating c-ring and the static subunit a provide a pathway for protons through the membrane in which the c-ring and subunit a are embedded. Vertebrate and invertebrate c-subunits are well conserved. In the structure of the bovine F1-ATPase-c-ring subcomplex, the 75 amino acid c-subunit is folded into two transmembrane α-helices linked by a short loop. Each bovine rotor-ring consists of eight c-subunits with the N- and C-terminal α-helices forming concentric inner and outer rings, with the loop regions exposed to the phospholipid head-group region on the matrix side of the inner membrane. Lysine-43 is in the loop region and its ε-amino group is completely trimethylated. The role of this modification is unknown. If the trimethylated lysine-43 plays some important role in the functioning, assembly or degradation of the c-ring, it would be expected to persist throughout vertebrates and possibly invertebrates also. Therefore, we have carried out a proteomic analysis of c-subunits across representative species from different classes of vertebrates and from invertebrate phyla. In the twenty-nine metazoan species that have been examined, the complete methylation of lysine-43 is conserved, and it is likely to be conserved throughout the more than two million extant metazoan species. In unicellular eukaryotes and prokaryotes, when the lysine is conserved it is unmethylated, and the stoichiometries of c-subunits vary from 9-15. One possible role for the trimethylated residue is to provide a site for the specific binding of cardiolipin, an essential component of ATP synthases in mitochondria.
Collapse
Affiliation(s)
- Thomas B Walpole
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and
| | - David N Palmer
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and the §Agriculture and Life Sciences Faculty, Lincoln University, 7647, New Zealand
| | - Huibing Jiang
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and the §Agriculture and Life Sciences Faculty, Lincoln University, 7647, New Zealand
| | - Shujing Ding
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and
| | - Ian M Fearnley
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and
| | - John E Walker
- From the ‡Mitochondrial Biology Unit, Medical Research Council, Hills Road, Cambridge, CB2 0XY, United Kingdom and
| |
Collapse
|
5
|
Sahoo A, Dandapat J, Samanta L. Oxidative Damaged Products, Level of Hydrogen Peroxide, and Antioxidant Protection in Diapausing Pupa of Tasar Silk Worm, Antheraea mylitta: A Comparative Study in Two Voltine Groups. INTERNATIONAL JOURNAL OF INSECT SCIENCE 2015; 7:11-17. [PMID: 26816485 PMCID: PMC4722883 DOI: 10.4137/ijis.s21326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/05/2015] [Accepted: 01/23/2015] [Indexed: 06/05/2023]
Abstract
The present study demonstrates tissue-specific (hemolymph and fat body) and inter-voltine [bivoltine (BV) and trivoltine (TV)] differences in oxidatively damaged products, H2O2 content, and the relative level of antioxidant protection in the diapausing pupae of Antheraea mylitta. Results suggest that fat body (FB) of both the voltine groups has oxidative predominance, as evident from the high value of lipid peroxidation and H2O2 content, despite better enzymatic defenses in comparison to hemolymph (HL). This may be attributed to the higher metabolic rate of the tissue concerned, concomitant with high lipid content and abundance of polyunsaturated fatty acids (PUFA). Nondetectable catalase activity in the pupal hemolymph of both strains apparently suggests an additional mechanism for H2O2 metabolism in the tissue. Inter-voltine comparison of the oxidative stress indices and antioxidant defense potential revealed that the TV group has a higher oxidative burden, lower activities for the antioxidant enzymes, and compensatory nonenzymatic protection from reduced glutathione and ascorbic acid.
Collapse
Affiliation(s)
- Alpana Sahoo
- Department of Zoology, North Orissa University, Baripada
| | | | - Luna Samanta
- Department of Zoology, Ravenshaw University, Cuttack, Orissa, India
| |
Collapse
|
6
|
Transcriptome responses of the host Trichoplusia ni to infection by the baculovirus Autographa californica multiple nucleopolyhedrovirus. J Virol 2014; 88:13781-97. [PMID: 25231311 DOI: 10.1128/jvi.02243-14] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Productive infection of Trichoplusia ni cells by the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) leads to expression of ~156 viral genes and results in dramatic cell remodeling. How the cell transcriptome responds to viral infection was unknown due to the lack of a reference genome and transcriptome for T. ni. We used an ~60-Gb RNA sequencing (RNA-seq) data set from infected and uninfected T. ni cells to generate and annotate a de novo transcriptome assembly of approximately 70,322 T. ni unigenes (assembled transcripts), representing the 48-h infection cycle. Using differential gene expression analysis, we found that the majority of host transcripts were downregulated after 6 h postinfection (p.i.) and throughout the remainder of the infection. In contrast, 5.7% (4,028) of the T. ni unigenes were upregulated during the early period (0 to 6 h p.i.), followed by a decrease through the remainder of the infection cycle. Also, a small subset of genes related to metabolism and stress response showed a significant elevation of transcript levels at 18 and 24 h p.i. but a decrease thereafter. We also examined the responses of genes belonging to a number of specific pathways of interest, including stress responses, apoptosis, immunity, and protein trafficking. We identified specific pathway members that were upregulated during the early phase of the infection. Combined with the parallel analysis of AcMNPV expression, these results provide both a broad and a detailed view of how baculovirus infection impacts the host cell transcriptome to evade cellular defensive responses, to modify cellular biosynthetic pathways, and to remodel cell structure. IMPORTANCE Baculoviruses are insect-specific DNA viruses that are highly pathogenic to their insect hosts. In addition to their use for biological control of certain insects, baculoviruses also serve as viral vectors for numerous biotechnological applications, such as mammalian cell transduction and protein expression for vaccine production. While there is considerable information regarding viral gene expression in infected cells, little is known regarding responses of the host cell to baculovirus infection. In these studies, we assembled a cell transcriptome from the host Trichoplusia ni and used that transcriptome to analyze changes in host cell gene expression throughout the infection cycle. The study was performed in parallel with a prior study of changes in viral gene expression. Combined, these studies provide an unprecedented new level of detail and an overview of events in the infection cycle, and they will stimulate new experimental approaches to understand, modify, and utilize baculoviruses for a variety of applications.
Collapse
|
7
|
Monteiro F, Bernal V, Saelens X, Lozano AB, Bernal C, Sevilla A, Carrondo MJ, Alves PM. Metabolic profiling of insect cell lines: Unveiling cell line determinants behind system's productivity. Biotechnol Bioeng 2013; 111:816-28. [DOI: 10.1002/bit.25142] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/02/2013] [Accepted: 10/22/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Francisca Monteiro
- Instituto de Biologia Experimental e Tecnológica; Oeiras Portugal
- Instituto de Tecnologia Quimica e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| | - Vicente Bernal
- Departamento de Bioquímica y Biología Molecular B e Inmunología; Facultad de Química; Universidad de Murcia; Murcia Spain
| | - Xavier Saelens
- Department for Molecular Biomedical Research; VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Ana B. Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología; Facultad de Química; Universidad de Murcia; Murcia Spain
| | - Cristina Bernal
- Departamento de Bioquímica y Biología Molecular B e Inmunología; Facultad de Química; Universidad de Murcia; Murcia Spain
| | - Angel Sevilla
- Departamento de Bioquímica y Biología Molecular B e Inmunología; Facultad de Química; Universidad de Murcia; Murcia Spain
- Inbionova Biotech S.L.; Universidad de Murcia; Murcia Spain
| | - Manuel J.T. Carrondo
- Instituto de Biologia Experimental e Tecnológica; Oeiras Portugal
- Instituto de Tecnologia Quimica e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
- Departamento de Química; Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Caparica Portugal
| | - Paula M. Alves
- Instituto de Biologia Experimental e Tecnológica; Oeiras Portugal
- Instituto de Tecnologia Quimica e Biológica; Universidade Nova de Lisboa; Oeiras Portugal
| |
Collapse
|
8
|
Jia F, Narasimhan B, Mallapragada S. Materials-based strategies for multi-enzyme immobilization and co-localization: A review. Biotechnol Bioeng 2013; 111:209-22. [DOI: 10.1002/bit.25136] [Citation(s) in RCA: 190] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/13/2013] [Accepted: 10/16/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Feng Jia
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| | - Balaji Narasimhan
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| | - Surya Mallapragada
- Department of Chemical and Biological Engineering; Iowa State University; Ames Iowa 50011-2230
| |
Collapse
|
9
|
Vieira HLA, Pereira ACP, Peixoto CC, Moraes RHP, Alves PM, Mendonça RZ. Improvement of recombinant protein production by an anti-apoptotic protein from hemolymph of Lonomia obliqua. Cytotechnology 2010; 62:547-55. [PMID: 20936342 DOI: 10.1007/s10616-010-9305-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022] Open
Abstract
Apoptosis is a major problem in animal cell culture during production of biopharmaceuticals, such as recombinant proteins or viral particles. In the present work baculovirus-insect cell expression system (BEVS/IC) is used as model to produce rotavirus like-particles, composed by three layers of three different viral proteins (VP2, VP6 and VP7). In this model baculovirus infection also induces host cell death. Herein a new strategy to enhance cell life span and to increase recombinant rotavirus protein production of BEVS/IC system was developed. This strategy relies on hemolymph from Lonomia oblique (total extracts or a semi-purified fraction) medium supplementation. The total extract and a purified fraction from hemolymph of Lonomia obliqua were able to protect Sf-9 cell culture against apoptosis triggered by oxidative stress (using the pro-oxidant agents tert butylhydroperoxide and hydrogen peroxide) and by baculovirus infection. Furthermore, hemolymph enhance final recombinant protein production, as it was observed by the increased amounts of VP6 and VP7, which were measured by the semi-quantitative western blot method. In conclusion, hemolymph medium supplementation can be a promising strategy to improve cell viability and productivity of recombinant protein in BEVS/IC system.
Collapse
Affiliation(s)
- Helena L A Vieira
- Instituto de Biologia Experimental e Tecnologia/Instituto de Tecnologia Química e Biológica IBET/ITQB -UNL, Apartado 12, 2781-901, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
10
|
Vieira HLA, Pereira ACP, Carrondo MJT, Alves PM. Catalase effect on cell death for the improvement of recombinant protein production in baculovirus-insect cell system. Bioprocess Biosyst Eng 2006; 29:409-14. [PMID: 17082911 DOI: 10.1007/s00449-006-0093-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2006] [Accepted: 09/28/2006] [Indexed: 11/24/2022]
Abstract
Baculovirus expression vector system (BEVS) in host insect cells is a powerful technology to produce recombinant proteins, as well as virus-like particles (VLP). However, BEVS is based on baculovirus infection, which limits the recombinant protein production by inducing insect cell death. Herein a new strategy to enhance cell life span and to increase recombinant protein production was developed. As baculovirus infection induces cellular oxidative stress, the ability of several antioxidants to inhibit cell death was tested during infection. The production of rotavirus structural proteins was used as model to analyse this new strategy. We found that only catalase is able to partially prevent cell death triggered by baculovirus infection and to inhibit lipid peroxidation. An increase in recombinant protein production was coupled with the partial cell death inhibition. In summary, the addition of catalase is a promising strategy to improve recombinant protein production in BEVS, by delaying insect cell death.
Collapse
Affiliation(s)
- Helena L A Vieira
- Instituto de Biologia Experimental e Tecnológica (IBET), Apartado 12, 2781-901, Oeiras, Portugal
| | | | | | | |
Collapse
|