1
|
Jung WW. Protective effect of apigenin against oxidative stress-induced damage in osteoblastic cells. Int J Mol Med 2014; 33:1327-34. [PMID: 24573323 DOI: 10.3892/ijmm.2014.1666] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 02/18/2014] [Indexed: 01/10/2023] Open
Abstract
Apigenin, a plant-derived flavonoid, was investigated to determine whether it could influence hydrogen peroxide (H2O2)-induced oxidative damage and cellular dysfunction in the MC3T3-E1 mouse osteoblastic cell line. In the present study, osteoblastic cells were treated with H2O2 in the presence or absence of apigenin. Cell viability, apoptosis, reactive oxygen species (ROS) production and mitochondrial membrane potential (ΔΨm) were subsequently examined. It was observed that H2O2 reduced cell survival and ΔΨm, while it markedly increased the intracellular levels of ROS and apoptosis. However, pretreatment of cells with apigenin attenuated all the H2O2-induced effects. The antioxidants, catalase and N-acetyl-L-cysteine (NAC) also prevented H2O2-induced oxidative cell damage. In addition, treatment with apigenin resulted in a significant elevation of osteoblast differentiation genes including alkaline phosphatase (ALP), collagen, osteopontin (OPN), osteoprotegerin (OPG), bone sialoprotein (BSP), osterix (OSX) and osteocalcin (OC) and bone morphogenetic proteins (BMPs) genes (BMP2, BMP4 and BMP7). In the mechanistic studies of cell signaling by the antioxidative potential of apigenin, it was found that apigenin activated the H2O2-induced decreased expression of phosphatidylinositol 3'-kinase (PI3K), protein kinase B2 (AKT2) genes and extracellular signal-related kinase (EPK) 2, which are key regulators of survival-related signaling pathways. By contrast, there were no changes in the expression of nuclear facor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) gene exposed to H2O2 in the present study. Apigenin also upregulated the gene expression of antioxidant enzymes, superoxide dismutase (SOD) 1, SOD2 and glutathione peroxidase (GPx) 1. Taken together, these results suggested that apigenin attenuated oxidative-induced cell damage in osteoblastic cells and may be useful for the treatment of oxidative-related bone disease.
Collapse
Affiliation(s)
- Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Cheongju, Chungbuk 360-764, Republic of Korea
| |
Collapse
|
2
|
Gao LN, An Y, Lei M, Li B, Yang H, Lu H, Chen FM, Jin Y. The effect of the coumarin-like derivative osthole on the osteogenic properties of human periodontal ligament and jaw bone marrow mesenchymal stem cell sheets. Biomaterials 2013; 34:9937-51. [DOI: 10.1016/j.biomaterials.2013.09.017] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 09/04/2013] [Indexed: 12/29/2022]
|
3
|
Liu Y, Yan F, Yang WL, Lu XF, Wang WB. Effects of zinc transporter on differentiation of bone marrow mesenchymal stem cells to osteoblasts. Biol Trace Elem Res 2013; 154:234-43. [PMID: 23775599 DOI: 10.1007/s12011-013-9683-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 04/23/2013] [Indexed: 01/22/2023]
Abstract
The differentiation of bone marrow mesenchymal stem cells (MSCs) into osteoblasts is a crucial step during bone formation. However, the exact mechanisms regulating the early stages of osteogenic differentiation remain unknown. In the present study, we found that ZnT7, a member of the zinc transporter family SLC30A(ZnTs), was downregulated during dexamethasone-induced differentiation of rat MSCs into osteoblasts. Dexamethasone treatment resulted in significantly lower levels of ZnT7 compared with cocultured cells without dexamethasone. Differentiation was evaluated by measuring alkaline phosphatase (ALP) activity and staining for ALP, von Kossa, collagen type I, and osteocalcin. Overexpression of ZnT7 decreased the expression of the osteoblast alkaline phosphatase, type I collagen, as well as calcium deposition in mesenchymal cells. In contrast, knockdown of ZnT7 using siRNA promoted gene expression associated with osteoblast differentiation and matrix mineralization in vitro. Moreover, according to the ZnT7 inhibition or activation experiments, Wnt and ERK signaling pathways were found to be important signal transduction pathways in mediating the osteogenic effect of MSCs, and this effect is intensified by a decrease in the level of ZnT7 induced by dexamethasone. These findings suggest that ZnT7 is involved in the switch from the undifferentiated state of MSC to an osteogenic program, and marking the expression level of ZnT7 may be useful in the detection of early osteogenic differentiation.
Collapse
Affiliation(s)
- Yang Liu
- The First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, China
| | | | | | | | | |
Collapse
|
4
|
Suh KS, Rhee SY, Jung WW, Kim NJ, Jang YP, Kim HJ, Kim MK, Choi YK, Kim YS. Chrysanthemum zawadskii extract protects osteoblastic cells from highly reducing sugar-induced oxidative damage. Int J Mol Med 2013; 32:241-50. [PMID: 23652775 DOI: 10.3892/ijmm.2013.1371] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 05/01/2013] [Indexed: 11/06/2022] Open
Abstract
In this study, Chrysanthemum zawadskii extract (CZE) was investigated to determine its effects on 2-deoxy-D-ribose (dRib)-induced oxidative damage and cellular dysfunction in the MC3T3-E1 mouse osteoblastic cell line. Osteoblastic cells were treated with the highly reducing sugar, dRib, in the presence or absence of CZE. Cell viability, apoptosis and reactive oxygen species (ROS) production were subsequently examined. It was observed that dRib reduced cell survival, while it markedly increased the intracellular levels of ROS and apoptosis. However, pre-treatment of the cells with CZE attenuated all the dRib-induced effects. The antioxidant, N-acetyl-L-cysteine (NAC), also prevented dRib-induced oxidative cell damage. In addition, treatment with CZE resulted in a significant increase in alkaline phosphatase (ALP) activity and collagen content, as well as in the expression of genes associated with osteoblast differentiation [ALP, collagen, osteopontin (OPN), osteoprotegerin (OPG), bone sialoprotein (BSP), osteocalcin (OC) and bone morphogenetic protein (BMP)2, BMP4 and BMP7]. In mechanistic studies of the antioxidative potential of CZE, we found that CZE reversed the dRib-induced decrease in the expression of phosphatidylinositol 3-kinase (PI3K) and protein kinase B (AKT)1 and AKT2 genes, which are master regulators of survival-related signaling pathways. CZE also upregulated the gene expression of the antioxidant enzymes, superoxide dismutase (SOD)2, SOD3 and glutathione peroxidase 4 (GPx4), which was inhibited by dRib. Taken together, these results suggest that CZE attenuates dRib-induced cell damage in osteoblastic cells and may be useful for the treatment of diabetes-associated bone disease.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
KIM HYUNSOOK, SUH KWANGSIK, KO ARA, SUL DONGGEUN, CHOI DALWOONG, LEE SEUNGKWAN, JUNG WOONWON. The flavonoid glabridin attenuates 2-deoxy-D-ribose-induced oxidative damage and cellular dysfunction in MC3T3-E1 osteoblastic cells. Int J Mol Med 2012; 31:243-51. [DOI: 10.3892/ijmm.2012.1172] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/11/2012] [Indexed: 11/05/2022] Open
|
6
|
Kim JL, Park SH, Jeong D, Nam JS, Kang YH. Osteogenic activity of silymarin through enhancement of alkaline phosphatase and osteocalcin in osteoblasts and tibia-fractured mice. Exp Biol Med (Maywood) 2012; 237:417-28. [DOI: 10.1258/ebm.2011.011376] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Bone-remodeling imbalance induced by increased bone resorption and osteoclast formation is known to cause skeletal diseases such as osteoporosis. There has been growing interest in the anabolic natural agents that enhance bone formation. Silymarin is flavonolignans extracted from blessed milk thistle. Several studies suggest that silymarin possesses antihepatotoxic properties and anticancer effects against carcinoma cells. This study investigated promoting effects of silymarin on differentiation and mineralization of osteoblastic MC3T3-E1 mouse cells and on bone mineral density (BMD) by in vivo fracture experiments. Osteoblasts were treated with 1–20 μmol/L silymarin for 15 days in a differentiating medium. In addition, this study explored signaling pathways implicated in the osteoblastogenesis of silymarin. It was found that silymarin stimulated alkaline phosphatase (ALP) activity and calcium nodule formation in a dose-dependent manner with a substantial effect on osteoblast proliferation. Silymarin treatment enhanced collagen secretion, osteocalcin transcription and bone morphogenetic protein (BMP) expression. The BMP inhibitor noggin suppressed the silymarin-promoted ALP activity in differentiated osteoblasts, suggesting that its osteoblastogenic actions entail the BMP pathway. This was proved by increased SMAD1/5/8 phosphorylation and runt-related transcription factor 2 (Runx2) expression in the presence of silymarin. In 21-day fracture-healing experiments, fractured and silymarin (10 mg/kg)-treated C57BL/6 mice showed better bone healing than fractured mice. Silymarin supplementation improved tibial bone strength with elevated BMD and serum levels of osteogenic ALP and osteocalcin. Taken together, these results demonstrate, for the first time, that silymarin has a potential to enhance osteoblastogenesis through accelerating BMP/SMAD/Runx2 signal pathways and to improve fracture healing and bone strength in mouse tibiae.
Collapse
Affiliation(s)
- Jung-Lye Kim
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702
| | - Sin-Hye Park
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702
| | - Daewon Jeong
- Department of Microbiology, Laboratory of Metabolic Disease Control for Bone, College of Medicine, Yeungnam University, Daegu 705–717
| | - Ju-Suk Nam
- Medical Science and Engineering Research Center, Hallym University, Chuncheon, Kangwon-do 200-702, Republic of Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, Chuncheon, Kangwon-do 200-702
| |
Collapse
|
7
|
Lee YS, Choi EM. Apocynin stimulates osteoblast differentiation and inhibits bone-resorbing mediators in MC3T3-E1 cells. Cell Immunol 2011; 270:224-9. [PMID: 21683946 DOI: 10.1016/j.cellimm.2011.05.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 03/30/2011] [Accepted: 05/16/2011] [Indexed: 12/13/2022]
Abstract
Apocynin is a naturally occurring methoxy-substituted catechol, experimentally used as an inhibitor of NADPH-oxidase. In the present study, the effect of apocynin on the function of osteoblastic MC3T3-E1 cells was studied. Apocynin caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and mineralization in the cells (P<0.05). Antimycin A (AMA), which inhibits complex III of the electron transport system, has been used as a reactive oxygen species (ROS) generator in biological systems. We exposed cultured osteoblastic MC3T3-E1 cells to AMA with or without pretreatment with apocynin. Apocynin significantly (P<0.05) increased cell survival, calcium deposition, and osteoprotegerin release and decreased the production of ROS and osteoclast differentiation inducing factors such as TNF-α, IL-6, and receptor activator of nuclear factor-kB ligand (RANKL) in the presence of AMA. These results demonstrate that apocynin can protect osteoblasts from mitochondrial dysfunction-induced toxicity and may have positive effects on skeletal structure.
Collapse
Affiliation(s)
- Young Soon Lee
- Department of Food and Nutrition, Education Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | | |
Collapse
|
8
|
Costunolide stimulates the function of osteoblastic MC3T3-E1 cells. Int Immunopharmacol 2011; 11:712-8. [PMID: 21296696 DOI: 10.1016/j.intimp.2011.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 01/17/2011] [Accepted: 01/17/2011] [Indexed: 11/22/2022]
Abstract
The effect of costunolide on the function of osteoblastic MC3T3-E1 cells was studied. Costunolide significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and mineralization in the cells (P<0.05). The effect of costunolide in increasing cell growth was completely prevented by the presence of ICI182780, LY294002, PD98059, rotlerin, or glibenclamide, suggesting that the effect of costunolide might be partly mediated from estrogen receptor (ER), PI3K, ERK, protein kinase C (PKC) and mitochondrial ATP-sensitive K(+) channel. The effect of costunolide in increasing ALP activity was prevented by the presence of ICI182780, PD98059, SB203580, or rotrelin, suggesting that the effect of costunolide on ALP activity might be mediated from ER, ERK, p38, and PKC. The effect of costunolide in increasing collagen content was prevented by the presence of LY294002, PD98059, SB203580, SP600125, or rotrelin, suggesting that the effect of costunolide on collagen synthesis might be mediated from PI3K, ERK, p38, JNK, and PKC. Moreover, cotreatment of ICI182780 or LY294002 inhibited costunolide-mediated upregulation of mineralization, suggesting that the induction of mineralization by costunolide is associated with increased activation of ER and PI3K. Our data indicate that the enhancement of osteoblast function by costunolide may result in the prevention for osteoporosis.
Collapse
|
9
|
Kwun IS, Cho YE, Lomeda RAR, Shin HI, Choi JY, Kang YH, Beattie JH. Zinc deficiency suppresses matrix mineralization and retards osteogenesis transiently with catch-up possibly through Runx 2 modulation. Bone 2010; 46:732-41. [PMID: 19913120 DOI: 10.1016/j.bone.2009.11.003] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2009] [Revised: 10/18/2009] [Accepted: 11/04/2009] [Indexed: 02/02/2023]
Abstract
A characteristic sign of zinc deficiency is retarded skeletal growth, but the role of zinc in osteoblasts is not well understood. Two major events for bone formation include osteoblast differentiation by bone marker gene expression, which is mainly regulated by bone-specific transcription factor Runx2 and extracellular matrix (ECM) mineralization by Ca deposits for bone nodule formation. We investigated whether zinc deficiency down-regulates bone marker gene transcription and whether this might occur through modulation of Runx2. We also investigated whether zinc deficiency decreases ECM mineralization in osteoblastic MC3T3-E1 cells. In the presence of 5 mumol/L TPEN as zinc chelator, zinc deficiency (ZnD: 1 micromol Zn/L) decreased bone marker gene (collagen type I, osteopontin, alkaline phosphatase, osteoclacin and parathyroid hormone receptor) expression, as compared to normal osteogenic medium (OSM) or zinc adequate medium (ZnA: 15 micromol/L) (P<0.05) both at 5 days (proliferation) and 15 days (matrix maturation). Decreased bone marker gene transcription by zinc deficiency could be caused by decreased nuclear Runx2 protein (P=0.05) and transcript (P<0.05) levels in ZnD. Furthermore, within the first 24 h of differentiation when Runx2 expression is induced, maximal Runx2 mRNA and nuclear protein levels were delayed in ZnD compared to OSM and ZnA. ECM Ca deposition was also lower in ZnD, which was also indirectly confirmed by detection of decreased cellular (synthesized) and medium (secreted) ALP activity as well as matrix ALP activity. Taken together, zinc deficiency attenuated osteogenic activity by decreasing bone marker gene transcription through reduced and delayed Runx2 expression and by decreasing ECM mineralization through inhibition of ALP activity in osteoblasts. Decreased and delayed bone marker gene, Runx2 expression and ECM mineralization in osteoblasts by zinc deficiency can be a potential explanation for the retarded skeletal growth which is the major zinc deficiency syndrome.
Collapse
Affiliation(s)
- In-Sook Kwun
- Department of Food Science and Nutrition, Andong National University, 388 Songchundong, Andong, Kyungpook 760-749, South Korea.
| | | | | | | | | | | | | |
Collapse
|
10
|
Suh KS, Choi EM, Kwon M, Chon S, Oh S, Woo JT, Kim SW, Kim JW, Kim YS. Kaempferol attenuates 2-deoxy-d-ribose-induced oxidative cell damage in MC3T3-E1 osteoblastic cells. Biol Pharm Bull 2009; 32:746-9. [PMID: 19336918 DOI: 10.1248/bpb.32.746] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reducing sugar, 2-deoxy-D-ribose (dRib), produces reactive oxygen species through autoxidation and protein glycosylation and causes osteoblast dysfunction. Kaempferol, a natural flavonoid, was investigated to determine whether it could influence dRib-induced cellular dysfunction and oxidative cell damage in the MC3T3-E1 mouse osteoblastic cell line. Osteoblastic cells were treated with 30 mM dRib in the presence or absence of kaempferol (10(-9)-10(-5) M) and markers of osteoblast function and lipid peroxidation were subsequently examined. Kaempferol (10(-9)-10(-5) M) significantly inhibited the dRib-induced decrease in growth of MC3T3-E1 osteoblastic cells. In addition, treatment with kaempferol resulted in a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and mineralization in the cells. Treatment with kaempferol increased osteoprotegerin (OPG) secretion and decreased malondialdehyde (MDA) contents of MC3T3-E1 osteoblastic cells in the presence of 30 mM dRib. Taken together, these results suggest that kaempferol inhibits dRib-induced osteoblastic cell damage and may be useful for the treatment of diabetes-related bone disease.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kim YH, Choi EM. Stimulation of osteoblastic differentiation and inhibition of interleukin-6 and nitric oxide in MC3T3-E1 cells by pomegranate ethanol extract. Phytother Res 2008; 23:737-9. [DOI: 10.1002/ptr.2587] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
12
|
Lee KH, Choi EM. Myricetin, a naturally occurring flavonoid, prevents 2-deoxy-D-ribose induced dysfunction and oxidative damage in osteoblastic MC3T3-E1 cells. Eur J Pharmacol 2008; 591:1-6. [PMID: 18599037 DOI: 10.1016/j.ejphar.2008.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 05/21/2008] [Accepted: 06/02/2008] [Indexed: 11/30/2022]
Abstract
Myricetin, a naturally occurring flavonoid, was investigated to determine whether it could protect osteoblasts from 2-deoxy-d-ribose induced dysfunction and oxidative damage in the MC3T3-E1 cells. MC3T3-E1 cells were incubated with 2-deoxy-d-ribose and/or myricetin, and markers of osteoblast function and oxidative damage were examined. Compared with control incubation, 2-deoxy-d-ribose significantly (P<0.05) inhibited alkaline phosphatase (ALP) activity, collagen content, and calcium deposition at the concentration of 20 mM. Cellular malondialdehyde (MDA), protein carbonyl, and advanced oxidation protein products contents were significantly (P<0.05) increased in the presence of 2-deoxy-d-ribose (20 mM). Myricetin significantly (P<0.05) increased cell survival, ALP activity, collagen, osteocalcin, osteoprotegerin, and calcium deposition and decreased MDA, protein carbonyl, and advanced oxidation protein products contents of osteoblastic MC3T3-E1 cells in the presence of 20 mM 2-deoxy-d-ribose. These results demonstrate that myricetin attenuates 2-deoxy-d-ribose induced damage, suggesting that myricetin may be a useful dietary supplement for minimizing oxidative injury in diabetes related bone diseases.
Collapse
Affiliation(s)
- Kyung-Hee Lee
- Department of Food Service Management, College of Hotel and Tourism Management, Kyung Hee University, Seoul 130-701, Republic of Korea
| | | |
Collapse
|
13
|
Effects of ginkgo biloba on in vitro osteoblast cells and ovariectomized rat osteoclast cells. Arch Pharm Res 2008; 31:216-24. [DOI: 10.1007/s12272-001-1144-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
14
|
Choi EM, Kim YH. Hesperetin attenuates the highly reducing sugar-triggered inhibition of osteoblast differentiation. Cell Biol Toxicol 2007; 24:225-31. [PMID: 17701078 DOI: 10.1007/s10565-007-9031-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Accepted: 07/16/2007] [Indexed: 02/02/2023]
Abstract
Diabetic bone disease is associated with increased oxidative damage and 2-deoxy-D: -ribose (dRib) is used to induce oxidative damage similar to that observed in diabetics. To determine if hesperetin (3',5,7-trihydroxy-4-methoxyflavanone) could influence osteoblast dysfunction induced by dRib, osteoblastic MC3T3-E1 cells were treated with dRib and hesperetin. Then, markers of osteoblast function and oxidative damage were examined. Hesperetin (10(-7)-10(-5) M) caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content, and total antioxidant potential of MC3T3-E1 cells in the presence of 20 mM dRib (p < 0.05). Moreover, hesperetin (10(-7) M) decreased cellular protein carbonyl (PCO), advanced oxidation protein products (AOPP), and malondialdehyde (MDA) contents of osteoblastic MC3T3-E1 cells in the presence of 20 mM dRib. These results demonstrate that hesperetin attenuates dRib-induced damage, suggesting that hesperetin may be a useful dietary supplement for minimizing oxidative injury in diabetes related bone diseases.
Collapse
Affiliation(s)
- Eun Mi Choi
- College of Pharmacy, Chungnam National University, Daejeon 305-764, South Korea
| | | |
Collapse
|
15
|
Arora M, Kennedy BJ, Ryan CG, Boadle RA, Walker DM, Harland CL, Lai B, Cai Z, Vogt S, Zoellner H, Chan SWY. The application of synchrotron radiation induced X-ray emission in the measurement of zinc and lead in Wistar rat ameloblasts. Arch Oral Biol 2007; 52:938-44. [PMID: 17521603 DOI: 10.1016/j.archoralbio.2007.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 04/04/2007] [Accepted: 04/06/2007] [Indexed: 12/31/2022]
Abstract
The development of analytical techniques for the measurement of trace elements in cellular compartments of developing teeth remains an important methodological issue in dental research. Recent advances in third generation synchrotron facilities have provided high brilliance X-ray sources that can be effectively used to study trace element distributions in small spatial regions with low detection limits. The present study describes for the first time the application of synchrotron radiation induced X-ray emission (SRIXE) in measuring the distribution of zinc and lead in the ameloblasts of developing Wistar rat teeth. Wistar rats were fed a standard rat diet, containing the normal dietary requirements of zinc, ad libitum and exposed to 100 ppm of lead in drinking water. Resin embedded sections of first mandibular molars were analysed using a 13.3 keV incident monochromatic X-ray beam focussed to a 0.2 microm spot. Characteristic X-rays arising from the entire thickness of the sample were measured using an energy dispersive detector for quantitative analysis of elemental concentrations. The results showed that intranuclear concentrations of zinc were greater than levels in the cytoplasm. Furthermore, nuclear and cytoplasmic concentrations of zinc in the maturation stage (742+/-27 and 424+/-25 ppm, respectively) were significantly higher than the zinc levels observed in the nucleus and cytoplasm of presecretory stage ameloblasts (132+/-10 and 109+/-10 ppm, respectively) (p<0.05). A clear lead signal above the background was not detected in the ameloblasts and lead concentrations could only be reliably measured in the developing enamel. Overall, SRIXE was an effective method of studying the spatial distribution of zinc in the cells of developing teeth and offered a unique combination of sub-micron spatial resolution and parts-per-million detection limits (0.8-1 and 0.6-1 ppm for zinc and lead, respectively).
Collapse
Affiliation(s)
- Manish Arora
- Cellular and Molecular Pathology Research Unit, Department of Oral Pathology, Faculty of Dentistry, University of Sydney, Westmead Centre for Oral Health, Westmead Hospital, Westmead, NSW 2145, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lusvardi G, Malavasi G, Menabue L, Menziani MC, Pedone A, Segre U, Aina V, Perardi A, Morterra C, Boccafoschi F, Gatti S, Bosetti M, Cannas M. Properties of Zinc Releasing Surfaces for Clinical Applications. J Biomater Appl 2007; 22:505-26. [PMID: 17623710 DOI: 10.1177/0885328207079731] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two series of glasses of general formula (2-p) SiO2·1.1Na 2O·CaO·pP2O5·xZnO (p=0.10, 0.20; x=0.0, 0.16, 0.35, and 0.78) have been analyzed for physico-chemical surface features before and after contact with simulated body fluid, morphological characteristics, and osteoblast-like cells behavior when cultured on them. The resulted good cell adhesion and growth, along with nonsignificant changes of the focal contacts, allow the authors to indicate HZ5 and HP5Z5 glasses as the ones having optimal ratio of Zn/P to maintain acceptable cell behavior, comparable to the bioactive glass (Bioglass®) used as a control; results are also rationalized by means of three-dimensional models derived by molecular dynamic simulations, with decomposition and conversion rates optimized with respect to the parent Hench's Bioglass®.
Collapse
Affiliation(s)
- G Lusvardi
- University of Modena and Reggio Emilia, Via Campi 483 41100 Modena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee KH, Choi EM. Stimulatory effects of extract prepared from the bark ofCinnamomum cassia blume on the function of osteoblastic MC3T3-E1 cells. Phytother Res 2006; 20:952-60. [PMID: 16906639 DOI: 10.1002/ptr.1984] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The ethanol extract from the bark of Cinnamomum cassia Blume (CCE) was tested for estrogenic activity. CCE (4-60 microg/mL) significantly induced the growth of MCF-7 cells, an ER-positive human breast cancer cell line, over that of untreated control cells (p < 0.05). In the ER competitive binding assay, CCE showed higher affinity with ERbeta compared with ERalpha. To investigate the bioactivities of CCE, which act on bone metabolism, the effects of CCE on the function of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts were studied. CCE (4-60 microg/mL) dose-dependently increased the survival of MC3T3-E1 cells. In addition, CCE (10 and 50 microg/mL) increased alkaline phosphatase (ALP) activity, collagen synthesis and osteocalcin secretion in MC3T3-E1 cells. Treatment with CCE (10 and 50 microg/mL) prevented apoptosis induced by TNF-alpha (10(-10) m) in osteoblastic cells. In the presence of TNF-alpha, culture with CCE (10-100 microg/mL) for 48 h inhibited the production of IL-6 and nitric oxide in osteoblastic MC3T3-E1 cells. These results suggest that Cinnamomum cassia has a direct stimulatory effect on bone formation in vitro and may contribute to the prevention of osteoporosis and inflammatory bone diseases.
Collapse
Affiliation(s)
- Kyung-Hee Lee
- Department of Food Service Management, College of Hotel and Tourism Management, Kyung Hee University, Dongdaemoon-gu, Seoul, Korea
| | | |
Collapse
|
18
|
Choi EM. The licorice root derived isoflavan glabridin increases the function of osteoblastic MC3T3-E1 cells. Biochem Pharmacol 2005; 70:363-8. [PMID: 15922308 DOI: 10.1016/j.bcp.2005.04.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2005] [Revised: 04/17/2005] [Accepted: 04/18/2005] [Indexed: 11/25/2022]
Abstract
Glabridin, an isoflavan purified from licorice root, exhibits diverse biological activities, including estrogen-like activity. To investigate the bioactivities of glabridin, which act on bone metabolism, the effects of glabridin on the function of mouse osteoblastic cell line (MC3T3-E1) and the production of local factors in osteoblasts were studied. Glabridin (1-10microM) significantly increased the growth of MC3T3-E1 cells and caused a significant elevation of alkaline phosphatase (ALP) activity, collagen content and osteocalcin secretion in the cells (P<0.05). The effect of glabridin (10microM) in increasing ALP activity and collagen content was completely prevented by the presence of 10(-6)M cycloheximide and 10(-6)M tamoxifen, suggesting that glabridin's effect results from a newly synthesized protein component and might be partly involved in estrogen action. Then, the effects of glabridin on the TNF-alpha-induced apoptosis and production of prostaglandin E2 (PGE2) and nitric oxide (NO) in osteoblasts were examined. Treatment with glabridin (1-10microM) prevented apoptosis induced by TNF-alpha (10(-10)M) in osteoblastic cells. Moreover, glabridin (50microM) decreased the 10(-10)M TNF-alpha-induced production of PGE2 and NO in osteoblasts. Our data indicate that the enhancement of osteoblast function by glabridin may result in the prevention for osteoporosis and inflammatory bone diseases.
Collapse
Affiliation(s)
- Eun-Mi Choi
- Department of Food and Nutrition, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| |
Collapse
|
19
|
Lee KH, Choi EM. Biochanin A Stimulates Osteoblastic Differentiation and Inhibits Hydrogen Peroxide-Induced Production of Inflammatory Mediators in MC3T3-E1 Cells. Biol Pharm Bull 2005; 28:1948-53. [PMID: 16204952 DOI: 10.1248/bpb.28.1948] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Phytoestrogens are plant chemicals that are structurally analogous to estrogen and are known to affect estrogenic activity. Biochanin A, a naturally occurring isoflavone, has been identified and detected in various diets and plant species. We examined the effects of biochanin A on the differentiation of osteoblastic MC3T3-E1 cells and the production of local factors in osteoblasts. Biochanin A (1-50 microM) caused a significant elevation of cell growth, alkaline phosphatase (ALP) activity, collagen content, and osteocalcin secretion in osteoblastic MC3T3-E1 cells (p<0.05). The effect of biochanin A (10 microM) in increasing ALP activity and collagen content was completely prevented by the presence of 10(-6) M cycloheximide and 10(-6) M tamoxifen, suggesting that biochanin A's effect results from a newly synthesized protein component and might be partly involved in estrogen action. We then examined the effect of biochanin A on the H2O2-induced production of inflammatory mediators in osteoblasts. Biochanin A (1-10 microM) decreased the 0.2 mM H2O2-induced production of TNF-alpha, IL-6 and NO in osteoblasts. These results suggest that biochanin A may be useful as potential phytoestrogens, which play important physiological roles in the prevention of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Kyung-Hee Lee
- Department of Food Service Management, College of Hotel and Tourism Management, Kyung Hee University; Seoul 130-701, Republic of Korea
| | | |
Collapse
|
20
|
Kanno S, Hirano S, Kayama F. Effects of phytoestrogens and environmental estrogens on osteoblastic differentiation in MC3T3-E1 cells. Toxicology 2004; 196:137-45. [PMID: 15036763 DOI: 10.1016/j.tox.2003.12.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2003] [Accepted: 12/01/2003] [Indexed: 10/26/2022]
Abstract
Phytoestrogens and environmental estrogens, which have in part some structural similarity to 17beta-estradiol, are reported to act as agonists/antagonists of estrogen in animals and humans. Estrogen is known to play an important role in maintaining bone mass, since the concentration of serum estrogen decreases after menopause and the estrogen deficiency results in bone loss. In this study, we report the effects of phytoestrogens (genistein, daidzein, and coumestrol) and environmental estrogens (bisphenol A (BPA), p-n-nonylphenol (NP) and bis(2-ethylhexyl)phthalate (DEHP)) on osteoblast differentiation using MC3T3-E1 cells, a mouse calvaria osteoblast-like cell line. Coumestrol (10(-10) to 10(-6)M) slightly enhanced cell proliferation, while neither the other phytoestrogens (daidzein, genistein) nor environmental estrogens increased cell proliferation. Alkaline phosphatase (ALP) activity and cellular calcium (Ca) and phosphorus (P) contents were increased by phytoestrogens and BPA; however, neither NP nor DEHP affected those osteoblastic indicators. The effects of estrogenic potency, using the cell proliferation of MCF-7 cells, an estrogen receptor (ER)-positive human breast cancer cell line, indicate that coumestrol has the highest estrogenic potency among those phytoestrogens and environmental estrogens. The estrogenic potency of NP and DEHP were lower than the others. In conclusion, phytoestrogens, such as coumestrol, genistein and daidzein, and BPA increased ALP activity and enhanced bone mineralization in MC3T3-E1 cells, suggesting that not only phytoestrogen but also BPA, an environmental estrogen, is implicated in bone metabolism.
Collapse
Affiliation(s)
- Sanae Kanno
- Environmental Health Sciences Division, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | |
Collapse
|