1
|
Meléndez AV, Velasco Cárdenas RMH, Lagies S, Strietz J, Siukstaite L, Thomas OS, Tomisch J, Weber W, Kammerer B, Römer W, Minguet S. Novel lectin-based chimeric antigen receptors target Gb3-positive tumour cells. Cell Mol Life Sci 2022; 79:513. [PMID: 36097202 PMCID: PMC9468074 DOI: 10.1007/s00018-022-04524-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 07/19/2022] [Accepted: 07/31/2022] [Indexed: 11/05/2022]
Abstract
The link between cancer and aberrant glycosylation has recently become evident. Glycans and their altered forms, known as tumour-associated carbohydrate antigens (TACAs), are diverse, complex and difficult to target therapeutically. Lectins are naturally occurring glycan-binding proteins that offer a unique opportunity to recognise TACAs. T cells expressing chimeric antigen receptors (CARs) have proven to be a successful immunotherapy against leukaemias, but so far have shown limited success in solid tumours. We developed a panel of lectin-CARs that recognise the glycosphingolipid globotriaosylceramide (Gb3), which is overexpressed in various cancers, such as Burkitt's lymphoma, colorectal, breast and pancreatic. We have selected the following lectins: Shiga toxin's B-subunit from Shigella dysenteriae, LecA from Pseudomonas aeruginosa, and the engineered lectin Mitsuba from Mytilus galloprovincialis as antigen-binding domains and fused them to a well-known second-generation CAR. The Gb3-binding lectin-CARs have demonstrated target-specific cytotoxicity against Burkitt's lymphoma-derived cell lines as well as solid tumour cells from colorectal and triple-negative breast cancer. Our findings reveal the big potential of lectin-based CARs as therapeutical applications to target Gb3 and other TACAs expressed in haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Ana Valeria Meléndez
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Rubí M-H Velasco Cárdenas
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Simon Lagies
- Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Albertstraße 21, 79102, Freiburg, Germany
| | | | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Oliver S Thomas
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Jana Tomisch
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany
| | - Bernd Kammerer
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany
- Institute of Organic Chemistry, Albert-Ludwigs-University Freiburg, Albertstraße 21, 79102, Freiburg, Germany
- Centre for Integrative Signalling Analysis, University of Freiburg, Habsburgerstraße 49, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- CIBSS, Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestraße 18, 79104, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Albertstraße 19a, 79104, Freiburg, Germany.
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany.
- Center of Chronic Immunodeficiency (CCI), University Clinics and Medical Faculty, Freiburg, Germany.
| |
Collapse
|
5
|
Meany DL, Chan DW. Aberrant glycosylation associated with enzymes as cancer biomarkers. Clin Proteomics 2011; 8:7. [PMID: 21906357 PMCID: PMC3170274 DOI: 10.1186/1559-0275-8-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 06/03/2011] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND One of the new roles for enzymes in personalized medicine builds on a rational approach to cancer biomarker discovery using enzyme-associated aberrant glycosylation. A hallmark of cancer, aberrant glycosylation is associated with differential expressions of enzymes such as glycosyltransferase and glycosidases. The aberrant expressions of the enzymes in turn cause cancer cells to produce glycoproteins with specific cancer-associated aberrations in glycan structures. CONTENT In this review we provide examples of cancer biomarker discovery using aberrant glycosylation in three areas. First, changes in glycosylation machinery such as glycosyltransferases/glycosidases could be used as cancer biomarkers. Second, most of the clinically useful cancer biomarkers are glycoproteins. Discovery of specific cancer-associated aberrations in glycan structures of these existing biomarkers could improve their cancer specificity, such as the discovery of AFP-L3, fucosylated glycoforms of AFP. Third, cancer-associated aberrations in glycan structures provide a compelling rationale for discovering new biomarkers using glycomic and glycoproteomic technologies. SUMMARY As a hallmark of cancer, aberrant glycosylation allows for the rational design of biomarker discovery efforts. But more important, we need to translate these biomarkers from discovery to clinical diagnostics using good strategies, such as the lessons learned from translating the biomarkers discovered using proteomic technologies to OVA 1, the first FDA-cleared In Vitro Diagnostic Multivariate Index Assay (IVDMIA). These lessons, providing important guidance in current efforts in biomarker discovery and translation, are applicable to the discovery of aberrant glycosylation associated with enzymes as cancer biomarkers as well.
Collapse
Affiliation(s)
- Danni L Meany
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21231, USA.
| | | |
Collapse
|
6
|
Heffer-Lauc M, Viljetić B, Vajn K, Schnaar RL, Lauc G. Effects of detergents on the redistribution of gangliosides and GPI-anchored proteins in brain tissue sections. J Histochem Cytochem 2007; 55:805-12. [PMID: 17409378 PMCID: PMC2386956 DOI: 10.1369/jhc.7a7195.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins contain lipid tails that tether them to the outer side of the cell membrane. This mode of association with the cell membrane enables them to take part in the organization of lipid rafts, but it also permits gangliosides and GPI-anchored proteins to be actively released from one cell and inserted into the membrane of another cell. Recently, we reported that under conditions of lipid raft isolation, Triton X-100 causes significant redistribution of both gangliosides and GPI-anchored proteins. Aiming to find a less disruptive detergent, we evaluated the effects of CHAPS, Saponin, deoxycholic acid, Trappsol, Tween 20, Triton X-100, Brij 96V, Brij 98, and SDS on brain tissue sections. At room temperature, all detergents (1% concentration) extracted significant amounts of both gangliosides and Thy-1. At 4C, the extraction was weaker, but Triton X-100, CHAPS, and deoxycholic acid caused significant redistribution of GD1a and Thy-1 from gray matter into the white matter. Both redistribution and extraction were significantly augmented when sections were incubated with detergents in the presence of primary antibodies. Of the nine tested detergents, none is the ideal choice. However, Brij 96V appears to be able to sufficiently reveal myelin epitopes while causing the least amount of artifacts. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.
Collapse
Affiliation(s)
- Marija Heffer-Lauc
- Department of Medical Biology, University of Osijek School of Medicine, J. Huttlera 4, 31000, Osijek, Croatia
| | | | | | | | | |
Collapse
|
7
|
Krengel U, Olsson LL, Martínez C, Talavera A, Rojas G, Mier E, Angström J, Moreno E. Structure and Molecular Interactions of a Unique Antitumor Antibody Specific for N-Glycolyl GM3. J Biol Chem 2004; 279:5597-603. [PMID: 14627696 DOI: 10.1074/jbc.m311693200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
N-glycolyl GM3 ganglioside is an attractive target antigen for cancer immunotherapy, because this epitope is a molecular marker of certain tumor cells and not expressed in normal human tissues. The murine monoclonal antibody 14F7 specifically recognizes N-glycolyl GM3 and shows no cross-reactivity with the abundant N-acetyl GM3 ganglioside, a close structural homologue of N-glycolyl GM3. Here, we report the crystal structure of the 14F7 Fab fragment at 2.5 A resolution and its molecular model with the saccharide moiety of N-glycolyl GM3, NeuGcalpha3Galbeta4Glcbeta. Fab 14F7 contains a very long CDR H3 loop, which divides the antigen-binding site of this antibody into two subsites. In the docking model, the saccharide ligand is bound to one of these subsites, formed solely by heavy chain residues. The discriminative feature of N-glycolyl GM3 versus N-acetyl GM3, its hydroxymethyl group, is positioned in a hydrophilic cavity, forming hydrogen bonds with the carboxyl group of Asp H52, the indole NH of Trp H33 and the hydroxyl group of Tyr H50. For the hydrophobic methyl group of N-acetyl GM3, this environment would not be favorable, explaining why the antibody specifically recognizes N-glycolyl GM3, but not N-acetyl GM3. Mutation of Asp H52 to hydrophobic residues of similar size completely abolished binding. Our model of the antibodycarbohydrate complex is consistent with binding data for several tested glycolipids as well as for a variety of 14F7 mutants with replaced VL domains.
Collapse
Affiliation(s)
- Ute Krengel
- Department of Chemistry and Biosciences, Chalmers University of Technology, P. O. Box 462, SE-40530 Göteborg, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Blomqvist M, Kaas A, Månsson JE, Formby B, Rynmark BM, Buschard K, Fredman P. Developmental expression of the type I diabetes related antigen sulfatide and sulfated lactosylceramide in mammalian pancreas. J Cell Biochem 2003; 89:301-10. [PMID: 12704793 DOI: 10.1002/jcb.10513] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies have shown that sulfatide is present and functionally involved in beta cells, and that anti-sulfatide antibodies (ASA) exist during development of type I diabetes mellitus. To further explore the possible role of sulfatide in type I diabetes, developmental expression was examined in human pancreas and in pancreas of the type I diabetes models BB rat and NOD mouse compared to Lewis rat and BALB/c mouse, respectively. Sulfatide was not only expressed in adult pancreas, but also in human fetal and rodent neonatal pancreas, i.e., during the growing period of the immunological self. Sulfatide had a different expression pattern in human beings and rodents, concerning both the amounts of sulfatide and expression during development. There was no change in the sulfatide fatty acid isoform expression during development. The pancreatic expression of another sulfated glycosphingolipid, sulfated lactosylceramide, indicated that this molecule is a potential fetal/neonatal marker, which was further expressed in the type I diabetic models. In conclusion, these findings give further support to the possibility that sulfatide is a relevant autoantigen in type I diabetes and that sulfated lactosylceramide might function as a potential risk factor for disease development, at least in the animal models.
Collapse
Affiliation(s)
- Maria Blomqvist
- Institute of Clinical Neuroscience, Experimental Neuroscience Section, The Sahlgrenska Academy at Göteborg University, Sahlgrenska University Hospital/Mölndal, SE-431 80 Mölndal, Sweden.
| | | | | | | | | | | | | |
Collapse
|