1
|
Estrogen promotes progression of hormone-dependent breast cancer through CCL2-CCR2 axis by upregulation of Twist via PI3K/AKT/NF-κB signaling. Sci Rep 2018; 8:9575. [PMID: 29934505 PMCID: PMC6015029 DOI: 10.1038/s41598-018-27810-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023] Open
Abstract
The chemokine (C-C motif) ligand 2 (CCL2) with its cognate receptor chemokine (C-C motif) receptor 2 (CCR2) plays important roles in tumor invasion and metastasis. However, the mechanisms and mediators for autocrine CCL2 and CCL2-CCR2 axis remain elusive in breast cancer. Here we examined the levels of CCL2 in 4 breast cancer cell lines along with 57 human breast cancer specimens and found them significantly increased with presence of 17β-estradiol (E2) in estrogen receptor (ER)-positive breast cancer cells, while anti-estrogen treatment weakened this enhancement. CCL2 expression positively correlated with Twist staining and aggressiveness of breast cancer. Estrogen exposure facilitated the proliferation, invasion and metastasis of hormone-dependent breast cancer and promoted angiogenesis via the increased secretion of CCL2 in vitro and in vivo, which could be suppressed by disruption of CCL2-CCR2 axis with CCR2 antagonist RS102895. Knockdown of Twist in MCF-7 cells significantly inhibited E2-induced CCL2 production, indicating an essential role of Twist in CCL2 regulation under estrogenic condition. Our data show the hormonal regulation on CCL2-CCR2 axis is associated with enhanced Twist expression via activation of ERα and PI3K/AKT/NF-κB signaling. Thus, CCL2-CCR2 axis may represent as a novel therapeutic target eagerly needed for hormone-dependent breast cancer.
Collapse
|
2
|
A CCL8 gradient drives breast cancer cell dissemination. Oncogene 2016; 35:6309-6318. [PMID: 27181207 PMCID: PMC5112152 DOI: 10.1038/onc.2016.161] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 03/21/2016] [Accepted: 04/06/2016] [Indexed: 01/14/2023]
Abstract
The migration of cancer cells towards gradients of chemoattractive factors represents a potential, yet elusive, mechanism that may contribute to cancer cell dissemination. Here we provide evidence for the maintenance of a gradient of increasing CCL8 concentration between the epithelium, the stroma and the periphery that is instrumental for breast cancer cells’ dissemination. In response to signals elicited by the neoplastic epithelium CCL8 production is enhanced in stromal fibroblasts at the tumor margins and in tissues at which breast cancer cells tend to metastasize such as the lungs and the brain. Manipulation of CCL8 activity influences the histology of the tumors and promotes major steps of the metastatic process such as invasion to adjacent stroma, intravasation and ultimately extravasation and seeding. These findings exemplify how gradients of chemoattractive factors such as CCL8, drive metastasis and suggest that interference with their operation may provide means for breast cancer management.
Collapse
|
3
|
Xu Y, Chu N, Qiu X, Gober HJ, Li D, Wang L. The interconnected role of chemokines and estrogen in bone metabolism. Biosci Trends 2016; 10:433-444. [DOI: 10.5582/bst.2016.01072] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Yingping Xu
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
- The Academy of Integrative Medicine of Fudan University
| | - Nan Chu
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
| | - Xuemin Qiu
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
- The Academy of Integrative Medicine of Fudan University
| | | | - Dajin Li
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
- The Academy of Integrative Medicine of Fudan University
| | - Ling Wang
- Obstetrics and Gynecology Hospital of Fudan University
- Shanghai Key Laboratory of Female Reproductive Endocrine-related Diseases
- Laboratory for Reproductive Immunology, Hospital & Institute of Obstetrics and Gynecology, IBS, Shanghai Medical College, Fudan University
- The Academy of Integrative Medicine of Fudan University
| |
Collapse
|
4
|
Aupperlee MD, Zhao Y, Tan YS, Leipprandt JR, Bennett J, Haslam SZ, Schwartz RC. Epidermal growth factor receptor (EGFR) signaling is a key mediator of hormone-induced leukocyte infiltration in the pubertal female mammary gland. Endocrinology 2014; 155:2301-13. [PMID: 24693965 PMCID: PMC4020926 DOI: 10.1210/en.2013-1933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It is well documented that macrophages and eosinophils play important roles in normal murine pubertal mammary gland development. Although it is accepted that estrogen (E) and progesterone (P) are key players in mammary gland development, the roles these hormones might play in regulating the actions of leukocytes in that process is an understudied area. We show here that P and E, respectively, induce unique, but overlapping, sets of proinflammatory and angiogenic cytokines and chemokines, in the pubertal female BALB/c mammary gland, as well as induce infiltration of macrophages and eosinophils to the mammary periepithelium. This extends earlier studies showing P induction of proinflammatory products in pubertal and adult mammary epithelial organoids and P-induced in vivo infiltration of leukocytes to the adult mammary periepithelium. Importantly, epidermal growth factor receptor-signaling, which is likely mediated by amphiregulin (Areg), a downstream mediator of E and P, is both necessary and sufficient for both E- and P-induced recruitment of macrophages and eosinophils to the pubertal mammary periepithelium. We further show that receptor activator of nuclear factor κB ligand (RANKL), although not sufficient of itself to cause macrophage and eosinophil recruitment, contributes to an optimal response to P. The potency of Areg is highlighted by the fact that it is sufficient to induce macrophage and eosinophil recruitment at levels equivalent to that induced by either E or P. Our finding of a dominant role for Areg in hormonally induced leukocyte recruitment to the pubertal mammary gland parallels its dominance in regulating ductal outgrowth and its role in P-induced proliferation in the pubertal gland.
Collapse
Affiliation(s)
- Mark D Aupperlee
- Breast Cancer and the Environment Research Program, Departments of Physiology (M.D.A., Y.Z., Y.S.T., J.R.L., J.B., S.Z.H.) and Microbiology and Molecular Genetics (R.C.S.), Michigan State University, East Lansing, Michigan 48824
| | | | | | | | | | | | | |
Collapse
|
5
|
Finger JW, Gogal RM. Endocrine-disrupting chemical exposure and the American alligator: a review of the potential role of environmental estrogens on the immune system of a top trophic carnivore. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:704-714. [PMID: 24051988 DOI: 10.1007/s00244-013-9953-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) alter cellular and organ system homeostasis by interfering with the body's normal physiologic processes. Numerous studies have identified environmental estrogens as modulators of EDC-related processes in crocodilians, notably in sex determination. Other broader studies have shown that environmental estrogens dysregulate normal immune function in mammals, birds, turtles, lizards, fish, and invertebrates; however, the effects of such estrogenic exposures on alligator immune function have not been elucidated. Alligators occupy a top trophic status, which may give them untapped utility as indicators of environmental quality. Environmental estrogens are also prevalent in the waters they occupy. Understanding the effects of these EDCs on alligator immunity is critical for managing and assessing changes in their health and is thus the focus of this review.
Collapse
Affiliation(s)
- John W Finger
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
6
|
Zeng XH, Ou ZL, Yu KD, Feng LY, Yin WJ, Li J, Shen ZZ, Shao ZM. Coexpression of atypical chemokine binders (ACBs) in breast cancer predicts better outcomes. Breast Cancer Res Treat 2011; 125:715-27. [PMID: 20369284 DOI: 10.1007/s10549-010-0875-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 03/25/2010] [Indexed: 01/16/2023]
Abstract
Some evidence suggests that atypical chemokine binders (ACBs) including DARC, D6, and CCX-CKR play an important role in inhibiting invasion and metastasis of cancer cells; however, their expression in breast cancer has not been well characterized. The purpose of this study was to determine the predictive value of ACBs for relapse-free survival and overall survival in breast cancer. The expressions of the three molecules were analyzed immunohistochemically in a total of 558 consecutive breast specimens comprising 12 normal breast tissues, 29 noninvasive (carcinoma in situ), and 517 invasive breast carcinoma and their relationships to clinicopathological features and survival were investigated in invasive breast cancer. Coexpression of ACBs in invasive breast carcinoma (55.9%) was much lower that of noninvasive breast carcinoma (93.1%) and normal breast tissue (100.0%), P = 0.0004, 0.0096, respectively. Their separate stainings in invasive cancer were significantly conversely correlated with lymph node status and tumor stage. In univariate analysis, the three proteins and their coexpression were significantly associated with higher relapse-free survival and overall survival. In multivariate analysis, each of these molecules was favorable for relapse-free survival, but not overall survival. Surprisingly, their coexpression was not only independently prognostic factor for relapse-free survival (RR = 0.182, 95% CI: 0.101-0.327, P < 0.001), but also for overall survival (RR = 0.271, 95% CI: 0.081-0.910, P = 0.035). These findings highlight that the multiple loss of ACBs may occur during the development of tumorigenesis and their coexpression in breast cancer is predictive of favorable outcomes.
Collapse
Affiliation(s)
- Xiao-Hua Zeng
- Breast Cancer Institute, Cancer Hospital, Department of Oncology, Shanghai Medical College, Institutes of Biomedical Science, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Wang X, Huang C, Sun B, Gu Y, Cui Y, Zhao X, Li Y, Zhang S. The effect of high gravidity on the carcinogenesis of mammary gland in TA2 mice. Am J Reprod Immunol 2010; 63:396-409. [PMID: 20148807 DOI: 10.1111/j.1600-0897.2009.00807.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
PROBLEM Spontaneous breast cancer in Tientsin Albinao 2 (TA2) mice, like human pregnancy-associated breast cancer (PABC), often occurs in pregnancy and puerperium, especially in mice with high gravidity. We hypothesized that the dysfunction of cellular immunity caused by the increase of 17beta-estradiol (E2) and progesterone (P) might be one of the reasons for carcinogenesis of mammary gland. METHOD OF STUDY We investigated the T lymphocyte subsets and the concentration of serum hormone and cytokines in cancer-bearing, pregnant or postpartum TA2 mice using flow cytometry, chemiluminescent immunoassay, and enzyme-linked immunosorbent assay (ELISA), respectively. RESULTS The number of T lymphocytes and the concentration of E2, P, interleukin-2 (IL-2), IL-4, and interferon-gamma (IFN-gamma) changed with the increase of pregnancy and puerperium. During four pregnancies, elevated E2 and P resulted in a decrease in the number of CD3(+), CD4(+) T lymphocytes, CD4(+)/CD8(+) ratio, and the concentration of IL-2, IL-4, and IFN-gamma. Data in the fourth pregnancy were the closest to those of cancer-bearing mice. CONCLUSION T lymphocyte subsets and concentration of IL-2, IL-4, and IFN-gamma are affected by E2 and P during multiple pregnancy and delivery to some degree, which may contribute to the genesis of spontaneous breast cancer in TA2 mice.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Pathology, Tianjin Cancer Institute and Hospital, Tianjin Medical University, He Xi District, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Salmon H, Berri M, Gerdts V, Meurens F. Humoral and cellular factors of maternal immunity in swine. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:384-93. [PMID: 18761034 DOI: 10.1016/j.dci.2008.07.007] [Citation(s) in RCA: 184] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 07/07/2008] [Accepted: 07/07/2008] [Indexed: 05/10/2023]
Abstract
Immunoglobulins cannot cross the placenta in pregnant sows. Neonatal pigs are therefore agammaglobulinemic at birth and, although immunocompetent, they cannot mount rapid immune responses at systemic and mucosal sites. Their survival depends directly on the acquisition of maternal immunity via colostrum and milk. Protection by maternal immunity is mediated by a number of factors, including specific systemic humoral immunity, involving mostly maternal IgG transferred from blood to colostrum and typically absorbed within the first 36 h of life. Passive mucosal immunity involves local humoral immunity, including the production of secretory IgA (sIgA), which is transferred principally via milk until weaning. The mammary gland (MG) produces sIgA, which is, then secreted into the milk via the poly-Ig receptor (pIgR) of epithelial cells. These antibodies are produced in response to intestinal and respiratory antigens, including pathogens and commensal organisms. Protection is also mediated by cellular immunity, which is transferred via maternal cells present in mammary secretions. The mechanisms underlying the various immunological links between MG and the mucosal surfaces involve hormonally regulated addressins and chemokines specific to these compartments. The enhancement of colostrogenic immunity depends on the stimulation of systemic immunity, whereas the enhancement of lactogenic immunity depends on appropriate stimulation at induction sites, an increase in cell trafficking from the gut and upper respiratory tract to the MG and, possibly, enhanced immunoglobulin production at the effector site and secretion in milk. In addition, mammary secretions provide factors other than immunoglobulins that protect the neonate and regulate the development of mucosal immunity--a key element of postnatal adaptation to environmental antigens.
Collapse
MESH Headings
- Animals
- Cell Movement
- Colostrum/cytology
- Colostrum/immunology
- Colostrum/metabolism
- Cytokines/metabolism
- Female
- Histocompatibility Antigens Class I/immunology
- Hormones/immunology
- Immunity, Maternally-Acquired
- Immunity, Mucosal
- Immunoglobulin A, Secretory/immunology
- Immunoglobulin A, Secretory/metabolism
- Intercellular Signaling Peptides and Proteins/immunology
- Mammary Glands, Animal/cytology
- Mammary Glands, Animal/immunology
- Mammary Glands, Animal/metabolism
- Pregnancy
- Receptors, Fc/immunology
- Receptors, Polymeric Immunoglobulin/immunology
- Receptors, Polymeric Immunoglobulin/metabolism
- Swine/embryology
- Swine/immunology
Collapse
Affiliation(s)
- Henri Salmon
- Institut National de la Recherche Agronomique (INRA), Lymphocytes et Immunité des Muqueuses UR1282, Infectiologie Animale et Santé Publique F-37380, Nouzilly (Tours), France.
| | | | | | | |
Collapse
|
9
|
Venables JP, Klinck R, Bramard A, Inkel L, Dufresne-Martin G, Koh C, Gervais-Bird J, Lapointe E, Froehlich U, Durand M, Gendron D, Brosseau JP, Thibault P, Lucier JF, Tremblay K, Prinos P, Wellinger RJ, Chabot B, Rancourt C, Elela SA. Identification of alternative splicing markers for breast cancer. Cancer Res 2008; 68:9525-31. [PMID: 19010929 DOI: 10.1158/0008-5472.can-08-1769] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Breast cancer is the most common cause of cancer death among women under age 50 years, so it is imperative to identify molecular markers to improve diagnosis and prognosis of this disease. Here, we present a new approach for the identification of breast cancer markers that does not measure gene expression but instead uses the ratio of alternatively spliced mRNAs as its indicator. Using a high-throughput reverse transcription-PCR-based system for splicing annotation, we monitored the alternative splicing profiles of 600 cancer-associated genes in a panel of 21 normal and 26 cancerous breast tissues. We validated 41 alternative splicing events that significantly differed in breast tumors relative to normal breast tissues. Most cancer-specific changes in splicing that disrupt known protein domains support an increase in cell proliferation or survival consistent with a functional role for alternative splicing in cancer. In a blind screen, a classifier based on the 12 best cancer-associated splicing events correctly identified cancer tissues with 96% accuracy. Moreover, a subset of these alternative splicing events could order tissues according to histopathologic grade, and 5 markers were validated in a further blind set of 19 grade 1 and 19 grade 3 tumor samples. These results provide a simple alternative for the classification of normal and cancerous breast tumor tissues and underscore the putative role of alternative splicing in the biology of cancer.
Collapse
Affiliation(s)
- Julian P Venables
- Laboratoire de génomique fonctionnelle de l'Université de Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nalbandian G, Kovats S. Understanding sex biases in immunity: effects of estrogen on the differentiation and function of antigen-presenting cells. Immunol Res 2008; 31:91-106. [PMID: 15778508 DOI: 10.1385/ir:31:2:091] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The initiation and perpetuation of innate and adaptive immunity is dependent on the ability of professional antigen-presenting cells (APCs) to sense inflammatory stimuli; produce cytokines; and internalize, degrade, and present antigens via surface major histocompatibility complex (MHC) molecules. Dendritic cells (DCs), macrophages, and B lymphocytes express estrogen receptors, indicating that the steroid sex hormone estrogen might directly modulate the function of these cells during immune responses. Sex-specific parameters of immune function have been identified during autoimmunity and the pathogenesis of infectious disease, which show sex biases in their incidence and manifestation; female immunity also varies as estrogen levels change. In this article, we summarize studies that demonstrate effects of estrogen on the differentiation or function of APCs in model in vitro systems, or under circumstances of natural or imposed variation in estrogen levels in vivo.
Collapse
Affiliation(s)
- Greg Nalbandian
- Division of Immunology, Beckman Research Institute, City of Hope National Medical Center, CA 91010, USA
| | | |
Collapse
|
11
|
Abstract
Recent studies have highlighted the possible involvement of chemokines and their receptors in breast cancer progression and metastasis. Chemokines and their receptors constitute a superfamily of signalling factors whose prognosis value in breast cancer progression remains unclear. We will examine here the expression pattern of chemokines and their receptors in mammary gland physiology and carcinogenesis. The nature of the cells producing chemokines or harboring chemokine receptors appears to be crucial in certain conditions for example, the infiltration of the primary tumor by leukocytes and angiogenesis. In addition, chemokines, their receptors and the interaction with glycosaminoglycan (GAGs) are key players in the homing of cancer cells to distant metastasis sites. Several lines of evidence, including in vitro and in vivo models, suggest that the mechanism of action of chemokines in cancer development involves the modulation of proliferation, apoptosis, invasion, leukocyte recruitment or angiogenesis. Furthermore, we will discuss the regulation of chemokine network in tumor neovascularity by decoy receptors. The reasons accounting for the deregulation of chemokines and chemokine receptors expression in breast cancer are certainly crucial for the comprehension of chemokine role in breast cancer and are in several cases linked to estrogen receptor status. The targeting of chemokines and chemokine receptors by antibodies, small molecule antagonists, viral chemokine binding proteins and heparins appears as promising tracks to develop therapeutic strategies. Thus there is significant interest in developing strategies to antagonize the chemokine function, and an opportunity to interfere with metastasis, the leading cause of death in most patients.
Collapse
Affiliation(s)
- Simi Ali
- School of Surgical and Reproductive Sciences, Medical School, University of Newcastle upon Tyne, Newcastle upon Tyne, NE2 4HH, UK.
| | | |
Collapse
|
12
|
Chavey C, Bibeau F, Gourgou-Bourgade S, Burlinchon S, Boissière F, Laune D, Roques S, Lazennec G. Oestrogen receptor negative breast cancers exhibit high cytokine content. Breast Cancer Res 2007; 9:R15. [PMID: 17261184 PMCID: PMC1851386 DOI: 10.1186/bcr1648] [Citation(s) in RCA: 259] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 12/29/2006] [Accepted: 01/29/2007] [Indexed: 11/11/2022] Open
Abstract
Introduction An emerging hypothesis suggests that cytokines could play an important role in cancer as potential modulators of angiogenesis and leucocyte infiltration. Methods A novel multiplexed flow cytometry technology was used to measure the expression of 17 cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-10, IL-12 [p70], IL-13, IL-17, granulocyte colony-stimulating factor [CSF], granulocyte-macrophage CSF, IFN-γ, monocyte chemoattractant protein [MCP]-1, macrophage inflammatory protein [MIP]-1β, tumour necrosis factor [TNF]-α) at the protein level in 105 breast carcinoma. B lymphocyte, T lymphocyte and macrophage levels were determined by immunohistochemistry. Results Fourteen of the 17 cytokines were expressed in breast carcinoma, whereas only nine cytokines could be detected in normal breast. Most cytokines were more abundant in breast carcinoma than in normal breast, with IL-6, IL-8, granulocyte CSF, IFN-γ, MCP-1 and MIP-1β being very abundant. IL-2, IL-6, IL-8, IL-10, IFN-γ, MCP-1, MIP-1β and TNF-α, and to a lesser extent IL-1β and IL-13 exhibited levels of expression that were inversely correlated to oestrogen receptor and progesterone receptor status. Most cytokines were not correlated with age at cancer diagnosis, tumour size, histological type, or lymph node status. However, IL-1β, IL-6, IL-8, IL-10, IL-12, MCP-1 and MIP-1β were more abundant in high-grade tumours than in low-grade tumours. In addition, IL-8 and MIP-1β were expressed to a greater degree in HER2-positive than in HER2-negative patients. The expression of most of the studied cytokines was correlated to levels of activator protein-1, which is known to regulate numerous cytokines. Overexpression of MCP-1 and MIP-1β were linked to B lymphocyte, T lymphocyte and macrophage infiltration, whereas high levels of IL-8 were correlated with high macrophage content in tumour. Moreover, IL-8 positive tumours exhibited increased vascularization. Conclusion We found that multiple cytokines were overexpressed in oestrogen receptor negative breast carcinoma, and that the three major cytokines – MCP-1, MIP-1β and IL-8 – were correlated with inflammatory cell component, which could account for the aggressiveness of these tumours.
Collapse
Affiliation(s)
- Carine Chavey
- INSERM, U844, Site Saint Eloi, Bâtiment INM, University of Montpellier I, rue Augustin Fliche, Montpellier, F-34091, France; Montpellier, F-34090, France
| | - Frédéric Bibeau
- CRLC Val d'Aurelle, Pathology Department, rue des Apothicaires, Montpellier, F-34298, France
| | | | - Sandrine Burlinchon
- INSERM, U844, Site Saint Eloi, Bâtiment INM, University of Montpellier I, rue Augustin Fliche, Montpellier, F-34091, France; Montpellier, F-34090, France
| | - Florence Boissière
- CRLC Val d'Aurelle, Pathology Department, rue des Apothicaires, Montpellier, F-34298, France
| | - Daniel Laune
- CNRS, UMR 5160, Centre de Pharmacologie et Biotechnologie pour la Sante, Faculte de Pharmacie, avenue Charles Flahault, Montpellier, F-34093, France
| | - Sylvie Roques
- CRLC Val d'Aurelle, Pathology Department, rue des Apothicaires, Montpellier, F-34298, France
| | - Gwendal Lazennec
- INSERM, U844, Site Saint Eloi, Bâtiment INM, University of Montpellier I, rue Augustin Fliche, Montpellier, F-34091, France; Montpellier, F-34090, France
| |
Collapse
|
13
|
Lengi AJ, Phillips RA, Karpuzoglu E, Ahmed SA. Estrogen selectively regulates chemokines in murine splenocytes. J Leukoc Biol 2006; 81:1065-74. [PMID: 17185357 DOI: 10.1189/jlb.0606391] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Estrogen has striking effects on immunity and inflammatory autoimmune conditions. One potential mechanism of estrogen-induced regulation of immunity and inflammatory autoimmune conditions is by altering the secretion of chemokines by lymphocytes, an aspect not well addressed thus far. We found that estrogen has marked, but differential, effects on the secretion of chemokines from activated splenocytes. Estrogen treatment significantly increased the secretion of MCP-1, MCP-5, eotaxin, and stromal cell-derived factor 1beta from Con A-activated splenocytes when compared with placebo-treated controls, and it had no effects on the levels of RANTES, thymus and activation-regulated chemokine, and keratinocyte-derived chemokine (KC) at 24 h. A kinetic analysis showed that chemokines tended to increase with stimulation time, but only MCP-1 and MCP-5 showed a biological trend of increasing in splenocytes from estrogen-treated mice, and KC was decreased significantly in estrogen-treated splenocytes at 18 h. Estrogen did not affect the protein levels of chemokine receptors CCR1 or CCR2 at 24 h. Estrogen-induced alterations in the levels of MCP-1 and MCP-5 are mediated, in part, by IFN-gamma, as estrogen treatment of IFN-gamma null mice, unlike wild-type mice, did not up-regulate these chemokines. However, addition of recombinant IFN-gamma resulted in markedly increased secretion of MCP-1 and MCP-5 only in the cells derived from estrogen-treated mice. These studies provide novel data indicating that estrogen may promote inflammatory conditions by altering the levels of chemokines, providing evidence for an additional mechanism by which estrogens can regulate inflammation.
Collapse
Affiliation(s)
- Andrea J Lengi
- Center for Molecular Medicine and Infectious Diseases, Department of Biomedical Sciences and Pathology, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, 1410 Prices Fork Road, Blacksburg, VA 24061-0342, USA
| | | | | | | |
Collapse
|
14
|
Seavey MM, Mosmann TR. Paternal Antigen-Bearing Cells Transferred during Insemination Do Not Stimulate Anti-Paternal CD8+T Cells: Role of Estradiol in Locally Inhibiting CD8+T Cell Responses. THE JOURNAL OF IMMUNOLOGY 2006; 177:7567-78. [PMID: 17114426 DOI: 10.4049/jimmunol.177.11.7567] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal immunological tolerance of the semiallogeneic fetus involves several overlapping mechanisms to balance maternal immunity and fetal development. Anti-paternal CD8+ T cells are suppressed during pregnancy in some but not all mouse models. Since semen has been shown to mediate immune modulation, we tested whether exposure to paternal Ag during insemination activated or tolerized anti-paternal CD8+ T cells. The uterine lumen of mated female mice contained male MHC I+ cells that stimulated effector, but not naive, CD8+ T cells ex vivo. Maternal MHC class I+ myeloid cells fluxed into the uterine lumen in response to mating and cross-presented male H-Y Ag to effector, but not naive, CD8+ T cells ex vivo. However, neither unprimed nor previously primed TCR-transgenic CD8+ T cells specific for either paternal MHC I or H-Y Ag proliferated in vivo after mating. These T cells subsequently responded normally to i.p. challenge, implicating ignorance rather than anergy as the main reason for the lack of response. CD8+ T cells responded to either peptide Ag or male cells delivered intravaginally in ovariectomized mice, but this response was inhibited by systemic estradiol (inducing an estrus-like state). Subcutaneous Ag induced responses in both cases. Allogeneic dendritic cells did not induce responses intravaginally even in ovariectomized mice in the absence of estradiol. These results suggest that inhibition of antiallogeneic responses is restricted both locally to the reproductive tract and temporally to the estrous phase of the menstrual cycle, potentially decreasing the risk of maternal immunization against paternal Ags during insemination.
Collapse
Affiliation(s)
- Matthew M Seavey
- David H. Smith Center for Vaccine Biology and Immunology, and Department of Microbiology and Immunology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | |
Collapse
|
15
|
Dave B, Eason RR, Geng Y, Su Y, Badger TM, Simmen RCM. Tp53-associated growth arrest and DNA damage repair gene expression is attenuated in mammary epithelial cells of rats fed whey proteins. J Nutr 2006; 136:1156-60. [PMID: 16614397 DOI: 10.1093/jn/136.5.1156] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dietary protection from mammary cancer is likely coordinated through multiple signaling pathways, based on the known heterogeneity of the disease and the distinct origins of mammary tumor cells. The present study examined the modulatory effects of dietary intake of whey protein hydrolysate (WPH) relative to casein (CAS), on mammary epithelial cell resistance to endogenous DNA damage using Tp53 gene expression and signaling as a read-out, and on systemic proapoptotic and immune surveillance activity, in young adult female Sprague-Dawley rats. Rats were fed AIN-93G diets made with CAS or WPH as the sole protein source beginning at gestation d 4. At postnatal day (PND) 50, mammary glands of rats fed WPH had lower levels of activated Tp53 and p38 mitogen-activated protein kinase proteins, and reduced transcript levels for Tp53-associated DNA damage repair, growth arrest, and proapoptotic genes than those of CAS-fed rats. Serum from WPH-fed rats had greater apoptotic activity in MCF-7 tumor cells than that from rats fed CAS. Serum levels of monocyte chemoattractant protein (MCP)-1 were higher in WPH- than in CAS-fed rats. MCF-7 cells treated with CAS serum + recombinant rat MCP-1 had apoptotic activity and Tp53 and p21 gene expression levels comparable to those treated with WPH serum or recombinant MCP-1. Results indicate that mammary glands of rats fed a WPH diet are more protected from endogenous DNA damage than are those of CAS-fed rats, and identify MCP-1 as a potential serum biomarker for the positive effects of healthy diets.
Collapse
Affiliation(s)
- Bhuvanesh Dave
- Arkansas Children's Nutrition Center and Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72202, USA
| | | | | | | | | | | |
Collapse
|
16
|
Hu Y, Sun H, Drake J, Kittrell F, Abba MC, Deng L, Gaddis S, Sahin A, Baggerly K, Medina D, Aldaz CM. From mice to humans: identification of commonly deregulated genes in mammary cancer via comparative SAGE studies. Cancer Res 2004; 64:7748-55. [PMID: 15520179 PMCID: PMC4170686 DOI: 10.1158/0008-5472.can-04-1827] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetically engineered mouse mammary cancer models have been used over the years as systems to study human breast cancer. However, much controversy exists on the utility of such models as valid equivalents to the human cancer condition. To perform an interspecies gene expression comparative study in breast cancer we used a mouse model that most closely resembles human breast carcinogenesis. This system relies on the transplant of p53 null mouse mammary epithelial cells into the cleared mammary fat pads of syngeneic hosts. Serial analysis of gene expression (SAGE) was used to obtain gene expression profiles of normal and tumor samples from this mouse mammary cancer model (>300,000 mouse mammary-specific tags). The resulting mouse data were compared with 25 of our human breast cancer SAGE libraries (>2.5 million human breast-specific tags). We observed significant similarities in the deregulation of specific genes and gene families when comparing mouse with human breast cancer SAGE data. A total of 72 transcripts were identified as commonly deregulated in both species. We observed a systematic and significant down-regulation in all of the tumors from both species of various cytokines, including CXCL1 (GRO1), LIF, interleukin 6, and CCL2. All of the mouse and most human mammary tumors also displayed decreased expression of genes known to inhibit cell proliferation, including NFKBIA (IKBalpha), GADD45B, and CDKN1A (p21); transcription-related genes such as CEBP, JUN, JUNB, and ELF1; and apoptosis-related transcripts such as IER3 and GADD34/PPP1R15A. Examples of overexpressed transcripts in tumors from both species include proliferation-related genes such as CCND1, CKS1B, and STMN1 (oncoprotein 18); and genes related to other functions such as SEPW1, SDFR1, DNCI2, and SP110. Importantly, abnormal expression of several of these genes has not been associated previously with breast cancer. The consistency of these observations was validated in independent mouse and human mammary cancer sets. This is the first interspecies comparison of mammary cancer gene expression profiles. The comparative analysis of mouse and human SAGE mammary cancer data validates this p53 null mouse tumor model as a useful system closely resembling human breast cancer development and progression. More importantly, these studies are allowing us to identify relevant biomarkers of potential use in human studies while leading to a better understanding of specific mechanisms of human breast carcinogenesis.
Collapse
Affiliation(s)
- Yuhui Hu
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville
| | - Hongxia Sun
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville
| | - Jeffrey Drake
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville
| | - Frances Kittrell
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston
| | - Martin C. Abba
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville
| | | | - Sally Gaddis
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville
| | - Aysegul Sahin
- Department of Pathology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Keith Baggerly
- Department of Biostatistics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Daniel Medina
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Houston
| | - C. Marcelo Aldaz
- Department of Carcinogenesis, The University of Texas M.D. Anderson Cancer Center, Science Park-Research Division, Smithville
| |
Collapse
|
17
|
Yang ZL, Deng XH, Yang LP, Miao XY, Liu DC. Relationship between expression of chemokines and tumor-associated macrophage counting in pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2004; 12:2349-2352. [DOI: 10.11569/wcjd.v12.i10.2349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the relationship among the expression of IL-8, MCP-1, MIP-1a and tumor-associated macrophage (TAM) counting in pancreatic cancer.
METHODS: Paraffin section of pancreatic cancer specimen was made using routine method. TAM was counted after staining. The expression of IL-8, MCP-1, MIP-1a was detected by immunohistochemical method
RESULTS: The positive rates of IL-8, MCP-1 and MIP-1a were 62.7%, 66.7% and 66.7%, and their scores were 2.9±1.9, 2.6±1.8 and 2.4±1.7, respectively. Mean counting of TAM was 18.0±6.0 in each pancreatic cancer specimen. The scores of IL-8 and TAM counting were significantly less in well-differentiated cancer than those in poorly-differentiated cancer (IL-8:2.7±1.7 vs 3.2±1.2, P <0.05; TAM:15.9±6.4 vs 21.2±5.2, P <0.05). The positive rates and levels of IL-8, MCP-1, MIP-1a expression as well as TAM counting were significantly higher in metastatic cancer than those in the cancer without metastasis (P <0.05 or P <0.01). TAM counting was significantly higher in IL-8, MCP-1 and MIP-1a positive cancer than that in the negative one. The levels of IL-8, MCP-1, MIP-1a expression positively related to TAM counting (rIL-8 = 0.52, P <0.01; rMCP-1 = 0.50, P <0.01; rMIP-1a = 0.46, P <0.01). At the same time, positive relationship existed between expression of IL-8 and MCP-1a (r = 0.52, P <0.01), IL-8 and MCP-1 (r = 0.54, P <0.01), MCP-1 and MCP-1a (r = 0.64, P <0.01).
CONCLUSION: The expression of IL-8, MCP-1, MIP-1a and TAM counting may relate to the progression, angiogenesis, metastasis and prognosis of pancreatic cancer. Positive expression of IL-8, MCP-1, MIP-1a and high TAM counting may indicate rapid progression and poor prognosis of pancreatic cancer.
Collapse
|
18
|
Aronica SM, Fanti P, Kaminskaya K, Gibbs K, Raiber L, Nazareth M, Bucelli R, Mineo M, Grzybek K, Kumin M, Poppenberg K, Schwach C, Janis K. Estrogen disrupts chemokine-mediated chemokine release from mammary cells: implications for the interplay between estrogen and IP-10 in the regulation of mammary tumor formation. Breast Cancer Res Treat 2004; 84:235-45. [PMID: 15026621 DOI: 10.1023/b:brea.0000019961.59306.f6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Chemokines are pro-inflammatory cytokines that function to attract immune cells to the sites of tissue inflammation, injury or infection. We have formulated the hypothesis that release of one chemokine can serve, in a local paracrine or endocrine fashion, to induce the release of other chemokines from neighboring mammary cells. We set out to investigate whether specific chemokines could promote the release of other chemokine members from mammary cells, and whether estrogen could serve to disrupt the release of these chemokines from mammary cells. We found that treatment with the chemokine IP-10 resulted in significant increases in the amount of MIP-1alpha and MCP-1/JE released from murine mammary cells. Estrogen co-treatment significantly blocked the ability of IP-10 to trigger the release of MIP-1alpha and MCP-1/JE. Suppressive effects of estrogen were reversed upon co-treatment with 4-hydroxytamoxifen. Estrogen treatment significantly decreased expression of proteins corresponding to the chemokine receptors CXCR3 and CCR5 on mammary cells. Exposure of female mice to IP-10 in vivo significantly decreased the ability of estrogen to support the growth of CCL-51-based tumors in mammary tissue. Our results suggest that exposure of mammary tissue to estrogen may decrease the release of local chemokines from mammary cells, potentially increasing the risk of tumor growth through decreased immune surveillance. Ongoing studies are investigating the possible mechanisms through which IP-10 stimulates the release of chemokines from mammary cells, and how the action of IP-10 may serve to decrease mammary tumor formation.
Collapse
Affiliation(s)
- S M Aronica
- Department of Biology, Canisius College, Buffalo, NY 14208, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|