1
|
|
2
|
Miller LJ, Chen Q, Lam PCH, Pinon DI, Sexton PM, Abagyan R, Dong M. Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling. J Biol Chem 2011; 286:15895-907. [PMID: 21454562 DOI: 10.1074/jbc.m110.217901] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The glucagon-like peptide 1 (GLP1) receptor is an important drug target within the B family of G protein-coupled receptors. Its natural agonist ligand, GLP1, has incretin-like actions and the receptor is a recognized target for management of type 2 diabetes mellitus. Despite recent solution of the structure of the amino terminus of the GLP1 receptor and several close family members, the molecular basis for GLP1 binding to and activation of the intact receptor remains unclear. We previously demonstrated molecular approximations between amino- and carboxyl-terminal residues of GLP1 and its receptor. In this work, we study spatial approximations with the mid-region of this peptide to gain insights into the orientation of the intact receptor and the ligand-receptor complex. We have prepared two new photolabile probes incorporating a p-benzoyl-l-phenylalanine into positions 16 and 20 of GLP1(7-36). Both probes bound to the GLP1 receptor specifically and with high affinity. These were each fully efficacious agonists, stimulating cAMP accumulation in receptor-bearing CHO cells in a concentration-dependent manner. Each probe specifically labeled a single receptor site. Protease cleavage and radiochemical sequencing identified receptor residue Leu(141) above transmembrane segment one as its site of labeling for the position 16 probe, whereas the position 20 probe labeled receptor residue Trp(297) within the second extracellular loop. Establishing ligand residue approximation with this loop region is unique among family members and may help to orient the receptor amino-terminal domain relative to its helical bundle region.
Collapse
Affiliation(s)
- Laurence J Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, Arizona 85259, USA.
| | | | | | | | | | | | | |
Collapse
|
3
|
Karlsson U, Antonsson L, Repits J, Medstrand P, Owman C, Kidd-Ljunggren K, Hagberg L, Svennerholm B, Jansson M, Gisslén M, Ljungberg B. Mode of coreceptor use by R5 HIV type 1 correlates with disease stage: a study of paired plasma and cerebrospinal fluid isolates. AIDS Res Hum Retroviruses 2009; 25:1297-1305. [PMID: 20001314 DOI: 10.1089/aid.2009.0069] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Through the use of chimeric CXCR4/CCR5 receptors we have previously shown that CCR5-tropic (R5) HIV-1 isolates acquire a more flexible receptor use over time, and that this links to a reduced viral susceptibility to inhibition by the CCR5 ligand RANTES. These findings may have relevance with regards to the efficacy of antiretroviral compounds that target CCR5/virus interactions. Compartmentalized discrepancies in coreceptor use may occur, which could also affect the efficacy of these compounds at specific anatomical sites, such as within the CNS. In this cross-sectional study we have used wild-type CCR5 and CXCR4 as well as chimeric CXCR4/CCR5 receptors to characterize coreceptor use by paired plasma and cerebrospinal fluid (CSF) isolates from 28 HIV-1-infected individuals. Furthermore, selected R5 isolates, with varying chimeric receptor use, were tested for sensitivity to inhibition by the CCR5 antagonist TAK-779. Discordant CSF/plasma virus coreceptor use was found in 10/28 patients. Low CD4+ T cell counts correlated strongly with a more flexible mode of R5 virus CCR5 usage, as disclosed by an increased ability to utilize chimeric CXCR4/CCR5 receptors, specifically receptor FC-2. Importantly, an elevated ability to utilize chimeric receptors correlated with a reduced susceptibility to inhibition by TAK-779. Our findings show that a discordant CSF and plasma virus coreceptor use is not uncommon. Furthermore, we provide support for an emerging paradigm, where the acquisition of a more flexible mode of CCR5 usage is a key event in R5 virus pathogenesis. This may, in turn, negatively impact the efficacy of CCR5 antagonist treatment in late stage HIV-1 disease.
Collapse
Affiliation(s)
- Ulf Karlsson
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| | - Liselotte Antonsson
- Department of Experimental Medical Science, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Johanna Repits
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Patrik Medstrand
- Department of Experimental Medical Science, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Christer Owman
- Department of Experimental Medical Science, Division of Medical Microbiology, Lund University, Lund, Sweden
| | - Karin Kidd-Ljunggren
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| | - Lars Hagberg
- Department of Infectious Diseases, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bo Svennerholm
- Department of Infectious Diseases, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marianne Jansson
- Department of Laboratory Medicine, Division of Medical Microbiology, Lund University, Lund, Sweden
- Department of Virology, Immunology and Vaccinology, Institute of Infectious Disease Control, Karolinska Institute, Stockholm, Sweden
| | - Magnus Gisslén
- Department of Infectious Diseases, University of Gothenburg, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Bengt Ljungberg
- Department of Clinical Sciences, Section for Clinical and Experimental Infection Medicine, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Mårtensson UEA, Fenyö EM, Olde B, Owman C. Characterization of the human chemerin receptor--ChemR23/CMKLR1--as co-receptor for human and simian immunodeficiency virus infection, and identification of virus-binding receptor domains. Virology 2006; 355:6-17. [PMID: 16904155 DOI: 10.1016/j.virol.2006.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Revised: 05/18/2006] [Accepted: 07/10/2006] [Indexed: 10/24/2022]
Abstract
Studies were conducted to elucidate co-receptor spectrum and function of the inflammatory receptor, CMKLR1/ChemR23, which was recently identified as the receptor for the cystatin-like chemoattractant, TIG2, also named chemerin. An infection model was applied based on stably transfected NP-2.CD4 host cells expressing various co-receptor constructs and exposed to panels of HIV-1, HIV-2 and SIV primary isolates. In a panel of 27 HIV-1 isolates tested, 12 isolates could use CMKLR1/ChemR23. As expected from a relatively high sequence homology with the extracellular domains of CCR3, HIV-1 isolates showing R3 tropism were particularly efficient in using CMKLR1/ChemR23. In addition, 5 out of 7 HIV-2 isolates and 13 out of 15 SIV (SMM-3 origin) used CMKLR1/ChemR23, in accordance with the previously documented ability of these isolates to use several co-receptors. In order to define important extracellular epitopes for the viral interaction, a hybrid receptor model was applied. This was based on the fact that the rat receptor, although structurally very similar to the human orthologue, was inefficient as viral co-receptor. When the rat receptor was "humanized" to include regions unique to the human receptor (N-terminus or second extracellular loop), exposure to HIV-1, HIV-2 and SIV isolates resulted in infection. The relative importance of the two critical receptor regions differed between HIV-1/HIV-2 on the one hand and SIV on the other. The results strongly support that the chemerin receptor, in the presence of CD4, functions as a "minor co-receptor" promoting infection by these classes of viruses.
Collapse
MESH Headings
- Amino Acid Sequence
- CD4-Positive T-Lymphocytes/virology
- Cell Line, Tumor
- Cell Membrane/chemistry
- Flow Cytometry
- HIV Core Protein p24/biosynthesis
- HIV-1/growth & development
- HIV-1/metabolism
- HIV-2/growth & development
- HIV-2/metabolism
- Humans
- Microscopy, Confocal
- Molecular Sequence Data
- Protein Structure, Tertiary
- Receptors, Chemokine/chemistry
- Receptors, Chemokine/genetics
- Receptors, Chemokine/metabolism
- Receptors, HIV/chemistry
- Receptors, HIV/genetics
- Receptors, HIV/metabolism
- Recombinant Proteins/metabolism
- Sequence Homology, Amino Acid
- Simian Immunodeficiency Virus/growth & development
- Simian Immunodeficiency Virus/metabolism
- Transfection
- Virus Attachment
Collapse
Affiliation(s)
- Ulrika E A Mårtensson
- Division of Molecular Neurobiology, Wallenberg Neuroscience Center, Lund University, SE-223 62, Sweden.
| | | | | | | |
Collapse
|
5
|
Antonsson L, Boketoft A, Garzino-Demo A, Olde B, Owman C. Molecular mapping of epitopes for interaction of HIV-1 as well as natural ligands with the chemokine receptors, CCR5 and CXCR4. AIDS 2003; 17:2571-9. [PMID: 14685051 DOI: 10.1097/00002030-200312050-00004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Mapping coreceptor epitopes used by the prototypic R5 and X4 strains, HIV-1BaL and HIV-1IIIB, in comparison with epitopes involved in the activation and signaling induced by the natural ligands, RANTES and SDF-1beta. DESIGN Receptor hybrids between CCR5 and CXCR4 were constructed. METHODS Using single-overlap and extension PCR, increasing portions of CCR5 were replaced with corresponding parts of CXCR4. Viral interaction with these constructs was monitored in infection experiments using stably transfected cell lines, and ligand-induced activation of cells transiently expressing the constructs was measured in terms of calcium fluxes. RESULTS SDF-1beta required an essentially complete CXCR4, whereas RANTES demanded both the N terminus and the first two extracellular loops of CCR5. HIV-1 infection experiments emphasized the importance of the CCR5 N terminus for infection with HIV-1BaL, whereas HIV-1IIIB was less demanding in its use of CXCR4. CONCLUSION This study, for the first time monitoring CCR5 and CXCR4 ligand activation and HIV-1 interaction concomitantly, indicates that ligands and virus use different receptor epitopes which, in turn, vary between the two receptors. One particular chimera (FC-4b), having its junctional region close to the conserved cysteine in ECL2, functioned as coreceptor for both HIV-1BaL and HIV-1IIIB, but was not activated with RANTES or SDF-1beta. The results provide a basis for tailoring drugs that block viral entry through the two major coreceptors without interfering with their physiological function.
Collapse
Affiliation(s)
- Liselotte Antonsson
- Division of Molecular Neurobiology, Wallenberg Neuroscience Center, Lund University, Sweden
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Pham V, Wade JD, Purdue BW, Sexton PM. Spatial proximity between a photolabile residue in position 19 of salmon calcitonin and the amino terminus of the human calcitonin receptor. J Biol Chem 2003; 279:6720-9. [PMID: 14623894 DOI: 10.1074/jbc.m307214200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcitonins are 32-amino acid peptide hormones with both peripheral and central actions mediated via specific cell surface receptors, which belong to the class II subfamily of G protein-coupled receptors. Understanding receptor function, particularly in terms of ligand recognition by calcitonin receptors, may aid in the rational design of calcitonin analogs with increased potency and improved selectivity. To directly identify sites of proximity between calcitonin and its receptor, we carried out photoaffinity labeling studies followed by protein digestion and mapping of the radiolabeled photoconjugated receptor. A fully active salmon calcitonin analog [Arg(11,18),Bpa19]sCT, incorporating a photolabile p-benzoyl-L-phenylalanine into position 19 of the ligand, has been used to demonstrate spatial proximity between residue 19 of the peptide and the amino-terminal extracellular domain of the receptor. Cyanogen bromide cleavage together with endoproteinase Asp-N digestion indicated that binding was predominantly to the region delimited by receptor residues Cys134 and Met187. Binding to this fragment was supported further by cyanogen bromide-digestion of receptors that were mutated to remove the predicted cleavage site at Met133 (M133A, M133L). Binding within the 54-amino acid fragment was refined further by digestion with endoproteinase Lys-C to the 8-amino acid region corresponding to Cys134-Lys141. These results provide the first direct demonstration of a contact domain between salmon calcitonin and its receptor and will contribute toward modeling of the calcitonin-receptor interface.
Collapse
Affiliation(s)
- Vi Pham
- Howard Florey Institute of Experimental Physiology and Medicine, the University of Melbourne, Victoria 3010, Australia
| | | | | | | |
Collapse
|
8
|
Kotarsky K, Antonsson L, Owman C, Olde B. Optimized reporter gene assays based on a synthetic multifunctional promoter and a secreted luciferase. Anal Biochem 2003; 316:208-15. [PMID: 12711342 DOI: 10.1016/s0003-2697(03)00082-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Efficient screening for ligands of seven-transmembrane, G-protein-coupled receptors, whether transfected or endogenously expressed, often involves cell-based reporter assays. Here we describe the development of reporter gene assays in HeLa cells. The reporter construct includes a synthetic multifunctional promoter with several different response motifs (NF-kappaB, STAT, and AP-1) and hence efficiently funnels several signaling pathways. The assay, performed with the resulting reporter cell line HFF11, has an exceptional high Z-factor and a large signal-to-background ratio. To facilitate cell handling during screening, we introduced a secreted Renilla luciferase as a reporter enzyme. HR36 reporter cells, equipped with the construct, were added to ligands present in a multiwell plate and after addition of coelenterazine they produced a luminescence readout. This procedure economizes cell handling and at the same time increases assay quality and sensitivity
Collapse
Affiliation(s)
- Knut Kotarsky
- Division of Molecular Neurobiology, Wallenberg Neuroscience Center, Lund University, Sweden.
| | | | | | | |
Collapse
|
9
|
Molecular Pharmacology and Structure-Function Analysis of PACAP/Vip Receptors. PITUITARY ADENYLATE CYCLASE-ACTIVATING POLYPEPTIDE 2003. [DOI: 10.1007/978-1-4615-0243-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
10
|
Laburthe M, Couvineau A. Molecular pharmacology and structure of VPAC Receptors for VIP and PACAP. REGULATORY PEPTIDES 2002; 108:165-73. [PMID: 12220741 DOI: 10.1016/s0167-0115(02)00099-x] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
VIP and PACAP are two prominent neuropeptides which share two common G protein-coupled receptors VPAC1 and VPAC2 while PACAP has an additional specific receptor PAC1. This paper reviews the present knowledge regarding three aspects of VPAC receptors including: (i). receptor specificity towards natural VIP-related peptides and pharmacology of synthetic agonists or antagonists; (ii). receptor signaling; (iii). molecular basis of ligand-receptor interaction as determined by site-directed mutagenesis, construction of receptor chimeras and structural modeling.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Humans
- Ligands
- Models, Molecular
- Neuropeptides/physiology
- Pituitary Adenylate Cyclase-Activating Polypeptide
- Protein Conformation
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I
- Receptors, Pituitary Hormone/physiology
- Receptors, Vasoactive Intestinal Peptide/chemistry
- Receptors, Vasoactive Intestinal Peptide/physiology
- Receptors, Vasoactive Intestinal Peptide, Type II
- Receptors, Vasoactive Intestinal Polypeptide, Type I
- Substrate Specificity
- Vasoactive Intestinal Peptide/chemistry
- Vasoactive Intestinal Peptide/metabolism
Collapse
Affiliation(s)
- M Laburthe
- Neuroendocrinology and Cell Biology, INSERM U41O, Faculté de Médecine Xavier Bichat, 75018, Paris, France.
| | | |
Collapse
|