1
|
Abstract
The human immunodeficiency virus type 1 (HIV-1) proteome is expressed from alternatively spliced and unspliced genomic RNAs. However, HIV-1 RNAs that are not fully spliced are perceived by the host machinery as defective and are retained in the nucleus. During late infection, HIV-1 bypasses this regulatory mechanism by expression of the Rev protein from a fully spliced mRNA. Once imported into the nucleus, Rev mediates the export of unprocessed HIV-1 RNAs to the cytoplasm, leading to the production of the viral progeny. While regarded as a canonical RNA export factor, Rev has also been linked to HIV-1 RNA translation, stabilization, splicing and packaging. However, Rev's functions beyond RNA export have remained poorly understood. Here, we revisit this paradigmatic protein, reviewing recent data investigating its structure and function. We conclude by asking: what remains unknown about this enigmatic viral protein?
Collapse
Affiliation(s)
| | - Aino Järvelin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, 464 Bearsden Road, Glasgow G61 1QH, UK
| |
Collapse
|
2
|
You M, Yang Y, Zhong C, Chen F, Wang X, Jia T, Chen Y, Zhou B, Mi Q, Zhao Q, An Z, Luo W, Xia N. Efficient mAb production in CHO cells with optimized signal peptide, codon, and UTR. Appl Microbiol Biotechnol 2018; 102:5953-5964. [PMID: 29740673 DOI: 10.1007/s00253-018-8986-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 04/02/2018] [Accepted: 04/05/2018] [Indexed: 12/17/2022]
Abstract
Antibody drugs have been used to treat a number of diseases successfully. Producing antibodies with high yield and quality is necessary for clinical applications of antibodies. For a candidate molecule, optimization of a vector to produce sufficient yield and an accurate primary structure is indispensable in the early stage of the production process development. It is especially important to maintain the fidelity of N-terminal sequence. In order to produce antibodies with a high yield and accurate N-terminal, the expression vector was systematically optimized in this study. First, the heavy chain and light chain were co-expressed in Chinese hamster ovary (CHO) cells with different signal peptides. Mass spectrometry (MS) revealed that signal peptides Esp-K, Bsp-H, and 8Hsp-H were accurately deleted from mature antibodies. Further, the yield was doubled by codon optimization and increased by 50% with the presence of untranslated regions (UTR). The combination of UTR with optimal codon and signal peptide to form an expression vector resulted in yield improvement of 150% and correct N-terminal sequences. Moreover, the main product peak was above 98% as assessed by size-exclusion chromatography (SEC). Additionally, the bioactivity of products made from optimized transient gene expression (TGE) was almost identical to the standard sample. The production efficiency and product quality from the identified TGE optimization strategy was further demonstrated through application to two other antibodies. The expression level of SGE (stable gene expression) can also be improved effectively with this optimization strategy. In conclusion, vector optimization via combination of optimized signal peptide, codon, and UTR is an alternative approach for efficient antibody production with high fidelity N-terminal sequence in CHO cells.
Collapse
Affiliation(s)
- Min You
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yi Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Chuanqi Zhong
- State Key Laboratory of Cellular Stress Biology, Xiamen University, Xiamen, 361102, China
| | - Fentian Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Xin Wang
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Tianrong Jia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yuanzhi Chen
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Bing Zhou
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Qingyu Mi
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Qinjian Zhao
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Zhiqiang An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
- Texas Therapeutics Institute, The Brown Foundation of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Wenxin Luo
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China.
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
3
|
In vitro functional assessment of natural HIV-1 group M Vpu sequences using a universal priming approach. J Virol Methods 2016; 240:32-41. [PMID: 27865749 DOI: 10.1016/j.jviromet.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 01/06/2023]
Abstract
The HIV-1 accessory protein Vpu exhibits high inter- and intra- subtype genetic diversity that may influence Vpu function and possibly contribute to HIV-1 pathogenesis. However, scalable methods to evaluate genotype/phenotype relationships in natural Vpu sequences are limited, particularly those expressing the protein in CD4+ T-cells, the natural target of HIV-1 infection. A major impediment to assay scalability is the extensive genetic diversity within, and immediately upstream of, Vpu's initial 5' coding region, which has necessitated the design of oligonucleotide primers specific for each individual HIV-1 isolate (or subtype). To address this, we developed two universal forward primers, located in relatively conserved regions 38 and 90 bases upstream of Vpu, and a single universal reverse primer downstream of Vpu, which are predicted to cover the vast majority of global HIV-1 group M sequence diversity. We show that inclusion of up to 90 upstream bases of HIV-1 genomic sequence does not significantly influence in vitro Vpu expression or function when a Rev/Rev Response Element (RRE)-dependent expression system is used. We further assess the function of four diverse HIV-1 Vpu sequences, revealing reproducible and significant differences between them. Our approach represents a scalable option to measure the in vitro function of genetically diverse natural Vpu isolates in a CD4+ T-cell line.
Collapse
|
4
|
van der Kuyl AC, Berkhout B. The biased nucleotide composition of the HIV genome: a constant factor in a highly variable virus. Retrovirology 2012; 9:92. [PMID: 23131071 PMCID: PMC3511177 DOI: 10.1186/1742-4690-9-92] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/14/2012] [Indexed: 01/09/2023] Open
Abstract
Viruses often deviate from their hosts in the nucleotide composition of their genomes. The RNA genome of the lentivirus family of retroviruses, including human immunodeficiency virus (HIV), contains e.g. an above average percentage of adenine (A) nucleotides, while being extremely poor in cytosine (C). Such a deviant base composition has implications for the amino acids that are encoded by the open reading frames (ORFs), both in the requirement of specific tRNA species and in the preference for amino acids encoded by e.g. A-rich codons. Nucleotide composition does obviously affect the secondary and tertiary structure of the RNA genome and its biological functions, but it does also influence phylogenetic analysis of viral genome sequences, and possibly the activity of the integrated DNA provirus. Over time, the nucleotide composition of the HIV-1 genome is exceptionally conserved, varying by less than 1% per base position per isolate within either group M, N, or O during 1983–2009. This extreme stability of the nucleotide composition may possibly be achieved by negative selection, perhaps conserving semi-stable RNA secondary structure as reverse transcription would be significantly affected for a less A-rich genome where secondary structures are expected to be more stable and thus more difficult to unfold. This review will discuss all aspects of the lentiviral genome composition, both of the RNA and of its derived double-stranded DNA genome, with a focus on HIV-1, the nucleotide composition over time, the effects of artificially humanized codons as well as contributions of immune system pressure on HIV nucleotide bias.
Collapse
Affiliation(s)
- Antoinette C van der Kuyl
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of the University of Amsterdam, Meibergdreef 15, Amsterdam, AZ 1105, The Netherlands.
| | | |
Collapse
|
5
|
Fath S, Bauer AP, Liss M, Spriestersbach A, Maertens B, Hahn P, Ludwig C, Schäfer F, Graf M, Wagner R. Multiparameter RNA and codon optimization: a standardized tool to assess and enhance autologous mammalian gene expression. PLoS One 2011; 6:e17596. [PMID: 21408612 PMCID: PMC3048298 DOI: 10.1371/journal.pone.0017596] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 01/30/2011] [Indexed: 01/31/2023] Open
Abstract
Autologous expression of recombinant human proteins in human cells for biomedical research and product development is often hampered by low expression yields limiting subsequent structural and functional analyses. Following RNA and codon optimization, 50 candidate genes representing five classes of human proteins – transcription factors, ribosomal and polymerase subunits, protein kinases, membrane proteins and immunomodulators – all showed reliable, and 86% even elevated expression. Analysis of three representative examples showed no detrimental effect on protein solubility while unaltered functionality was demonstrated for JNK1, JNK3 and CDC2 using optimized constructs. Molecular analysis of a sequence-optimized transgene revealed positive effects at transcriptional, translational, and mRNA stability levels. Since improved expression was consistent in HEK293T, CHO and insect cells, it was not restricted to distinct mammalian cell systems. Additionally, optimized genes represent powerful tools in functional genomics, as demonstrated by the successful rescue of an siRNA-mediated knockdown using a sequence-optimized counterpart. This is the first large-scale study addressing the influence of multiparameter optimization on autologous human protein expression.
Collapse
Affiliation(s)
| | - Asli Petra Bauer
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | - Ralf Wagner
- Geneart AG, BioPark, Regensburg, Germany
- Molecular Microbiology and Gene Therapy Unit, Institute of Medical Microbiology and Hygiene, University of Regensburg, Regensburg, Germany
- * E-mail:
| |
Collapse
|