1
|
Norred MA, Zuschlag ZD, Hamner MB. A Neuroanatomic and Pathophysiologic Framework for Novel Pharmacological Approaches to the Treatment of Post-traumatic Stress Disorder. Drugs 2024; 84:149-164. [PMID: 38413493 DOI: 10.1007/s40265-023-01983-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 02/29/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a debilitating disorder inflicting high degrees of symptomatic and socioeconomic burdens. The development of PTSD results from a cascade of events with contributions from multiple processes and the underlying pathophysiology is complex, involving neurotransmitters, neurocircuitry, and neuroanatomical pathways. Presently, only two medications are US FDA-approved for the treatment of PTSD, both selective serotonin reuptake inhibitors (SSRIs). However, the complex underlying pathophysiology suggests a number of alternative pathways and mechanisms that may be targets for potential drug development. Indeed, investigations and drug development are proceeding in a number of these alternative, non-serotonergic pathways in an effort to improve the management of PTSD. In this manuscript, the authors introduce novel and emerging treatments for PTSD, including drugs in various stages of development and clinical testing (BI 1358894, BNC-210, PRAX-114, JZP-150, LU AG06466, NYV-783, PH-94B, SRX246, TNX-102), established agents and known compounds being investigated for their utility in PTSD (brexpiprazole, cannabidiol, doxasoin, ganaxolone, intranasal neuropeptide Y, intranasal oxytocin, tianeptine oxalate, verucerfont), and emerging psychedelic interventions (ketamine, MDMA-assisted psychotherapy, psilocybin-assisted psychotherapy), with an aim to examine and integrate these agents into the underlying pathophysiological frameworks of trauma-related disorders.
Collapse
Affiliation(s)
- Michael A Norred
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Zachary D Zuschlag
- Mental Health and Behavioral Sciences Service, James A. Haley Veterans Hospital, Tampa, FL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of South Florida, Tampa, FL, USA
| | - Mark B Hamner
- Behavioral Health Service, Ralph H. Johnson VA Medical Center, 109 Bee Street, Charleston, SC, 29401, USA.
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
3
|
Garakani A, Murrough JW, Freire RC, Thom RP, Larkin K, Buono FD, Iosifescu DV. Pharmacotherapy of Anxiety Disorders: Current and Emerging Treatment Options. Front Psychiatry 2020; 11:595584. [PMID: 33424664 PMCID: PMC7786299 DOI: 10.3389/fpsyt.2020.595584] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Anxiety disorders are the most prevalent psychiatric disorders and a leading cause of disability. While there continues to be expansive research in posttraumatic stress disorder (PTSD), depression and schizophrenia, there is a relative dearth of novel medications under investigation for anxiety disorders. This review's first aim is to summarize current pharmacological treatments (both approved and off-label) for panic disorder (PD), generalized anxiety disorder (GAD), social anxiety disorder (SAD), and specific phobias (SP), including selective serotonin reuptake inhibitors (SSRIs), serotonin norepinephrine reuptake inhibitors (SNRIs), azapirones (e.g., buspirone), mixed antidepressants (e.g., mirtazapine), antipsychotics, antihistamines (e.g., hydroxyzine), alpha- and beta-adrenergic medications (e.g., propranolol, clonidine), and GABAergic medications (benzodiazepines, pregabalin, and gabapentin). Posttraumatic stress disorder and obsessive-compulsive disorder are excluded from this review. Second, we will review novel pharmacotherapeutic agents under investigation for the treatment of anxiety disorders in adults. The pathways and neurotransmitters reviewed include serotonergic agents, glutamate modulators, GABAergic medications, neuropeptides, neurosteroids, alpha- and beta-adrenergic agents, cannabinoids, and natural remedies. The outcome of the review reveals a lack of randomized double-blind placebo- controlled trials for anxiety disorders and few studies comparing novel treatments to existing anxiolytic agents. Although there are some recent randomized controlled trials for novel agents including neuropeptides, glutamatergic agents (such as ketamine and d-cycloserine), and cannabinoids (including cannabidiol) primarily in GAD or SAD, these trials have largely been negative, with only some promise for kava and PH94B (an inhaled neurosteroid). Overall, the progression of current and future psychopharmacology research in anxiety disorders suggests that there needs to be further expansion in research of these novel pathways and larger-scale studies of promising agents with positive results from smaller trials.
Collapse
Affiliation(s)
- Amir Garakani
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Silver Hill Hospital, New Canaan, CT, United States.,Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rafael C Freire
- Department of Psychiatry and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Robyn P Thom
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Kaitlyn Larkin
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Frank D Buono
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
| | - Dan V Iosifescu
- Clinical Research Division, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, United States.,Department of Psychiatry, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Lu Y, Zhang J, Zhang L, Dang S, Su Q, Zhang H, Lin T, Zhang X, Zhang Y, Sun H, Zhu Z, Li H. Hippocampal Acetylation may Improve Prenatal-Stress-Induced Depression-Like Behavior of Male Offspring Rats Through Regulating AMPARs Expression. Neurochem Res 2017; 42:3456-3464. [PMID: 29019029 DOI: 10.1007/s11064-017-2393-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/03/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
This study is to determine the role and mechanism of hippocampal acetylation in prenatal stress (PS) induced depression-like behavior of male offspring rats. PS-induced depression rat model was established. Sucrose preference and forced swim test were used to observe the behavior changes of male offspring rats. Hippocampal acetylation was induced by Trichostatin A injection. Quantitative real-time PCR and Western blot were used to determine the changes of AMPARs in acetylated hippocampus. The behavioral tests proved that AMPA was involved in the PS-induced depression-like behavior in offspring rats. Hippocampal acetylation significantly increased the preference to sucrose of PS-induced offspring rats and reduced the immobile time in forced swimming test, suggesting that acetylation could improve PS-induced depression-like behaviors. In addition, PS inhibited the expression levels of GluA1-3 subunits of AMPARs in the offspring hippocampus, while Hippocampal acetylation could reverse this effect by increasing GluA1-3 expression. PS-induced reduction of GluA1-3 subunits of AMPARs may be an important potential mechanism of offspring depression. Hippocampal acetylation may improve PS-induced offspring depression-like behavior through the enhanced expression of AMPARs (GluA1-3 subunits).
Collapse
Affiliation(s)
- Yong Lu
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China.,Center Laboratory, Heze Medical College, Heze, 274000, Shandong, China
| | - Junli Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Lin Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Shaokang Dang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Qian Su
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Huiping Zhang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Tianwei Lin
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Xiaoxiao Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Yurong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical College, Xi'an, 710077, Shanxi, China
| | - Hongli Sun
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Zhongliang Zhu
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China.
| |
Collapse
|