1
|
Mujitaba MA, Kútvölgyi G, Radnai Szentpáli J, Debnár VJ, Tokár A, Vass N, Bodó S. The Influence of Three Commercial Soy Lecithin-Based Semen Extenders and Two Spermatozoa Concentrations on the Quality of Pre-Freeze and Post-Thaw Ram Epididymal Spermatozoa. Animals (Basel) 2024; 14:1237. [PMID: 38672385 PMCID: PMC11047534 DOI: 10.3390/ani14081237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
There are limited studies on the factors affecting the success of ram epididymal spermatozoa (REPS) cryopreservation. On this note, the current study assessed the influence of three commercial soy lecithin-based semen extenders, AndroMed® (AND), BioXcell® (BIO), and OviXcell® (OVI), and two concentrations (400 × 106 vs. 200 × 106 spermatozoa/mL) on the pre-freeze and post-thaw quality of REPS. The REPS were retrieved from nine adult rams' testes and diluted with each of the three extenders to both concentrations. Straws were frozen manually. Standard motility (SMP) and kinematic parameters (KPs) were assessed via a CASA, while spermatozoa viability, morphology, and acrosomal integrity were assessed via the Kovács-Foote staining technique. The concentration did not significantly affect the pre-freeze and post-thaw SMP and KPs of REPS. BIO and OVI had significantly higher pre-freeze and post-thaw BCFs, post-thaw VAP, and the percentage of all intact heads than AND. In contrast, AND had a significantly lower percentage of REPS with tail defects than BIO and OVI. The 400 × 106 spermatozoa/mL concentration resulted in a significantly higher percentage of all intact heads than the 200 × 106 spermatozoa/mL concentration. Freezing significantly increased tail defects and decreased the percentage of REPS with distal cytoplasmic droplets. The cryopreservation of REPS at the 400 × 106 spermatozoa/mL concentration is recommended. All three extenders must be optimized to preserve the viability, membrane integrity, and better normal morphology of REPS; the reason for increased tail abnormality after the freezing/thawing process needs to be studied.
Collapse
Affiliation(s)
- Malam Abulbashar Mujitaba
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary; (M.A.M.); (N.V.)
- Doctoral School of Animal Science, University of Debrecen, H-4032 Debrecen, Hungary
| | - Gabriella Kútvölgyi
- Department of Precision Livestock Farming and Animal Biotechnics, Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor Street 40, H-7400 Kaposvár, Hungary; (V.J.D.); (S.B.)
| | - Judit Radnai Szentpáli
- Institute of Horticultural Science, Hungarian University of Agriculture and Life Sciences, Buda Campus, Villányi Street 29-43, H-1118 Budapest, Hungary;
| | - Viktória Johanna Debnár
- Department of Precision Livestock Farming and Animal Biotechnics, Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor Street 40, H-7400 Kaposvár, Hungary; (V.J.D.); (S.B.)
| | - Alexandra Tokár
- Festetics György Doctoral School, Hungarian University of Agriculture and Life Sciences, Deák Ferenc Street 16, H-8360 Keszthely, Hungary;
| | - Nóra Vass
- Department of Animal Nutrition and Physiology, Faculty of Agriculture and Food Sciences and Environmental Management, University of Debrecen, Böszörményi Street 138, H-4032 Debrecen, Hungary; (M.A.M.); (N.V.)
| | - Szilárd Bodó
- Department of Precision Livestock Farming and Animal Biotechnics, Institute of Animal Sciences, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor Street 40, H-7400 Kaposvár, Hungary; (V.J.D.); (S.B.)
| |
Collapse
|
2
|
Elshamy AA, Kotram LE, Barakat OS, Mahmoud SM. The effects of green synthesized anionic cupric oxide nanoparticles on Zaraibi goat spermatozoa during cryopreservation with and without removal of seminal plasma. Anim Biotechnol 2023; 34:2582-2595. [PMID: 35930359 DOI: 10.1080/10495398.2022.2106992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Sperm motility, normal morphology, viability, spermatozoa DNA damage, and lipid peroxidation are all affected by semen cryopreservation. The goal of this study was to see how effective cupric oxide nanoparticles (CuONPs) are as a cryo-extender additive on post-thawed sperm parameters. An artificial vagina was used to collect semen samples from five mature Zaraibi bucks (2-3 years). Ejaculates were pooled and separated into two fractions (A&B), a fraction (A) was left without being centrifuged and a fraction (B) was centrifuged to remove seminal plasma. Both fractions were diluted with tris egg yolk citrate extender (TECE) and then divided into five equal aliquots, each supplemented with (0, 10, 20, 40, and 60 ppm/ml) CuONPs. The findings revealed that removing seminal plasma before cryopreservation harms sperm parameters. Sperm motility, viability index, membrane integrity, biochemical antioxidant marker, DNA integrity, and MDA level improved after supplementation with CuONPs up to 60 ppm/ml, the most prominent significant positive effect was obtained with the highest dose (60 ppm/ml) without removal of the seminal plasm compared to control group. In conclusion: The presence of seminal plasma with a high concentration of CuONPs (up to 60 ppm/ml) may help to mitigate the negative effects of cryo-preservation.
Collapse
Affiliation(s)
- Ayat A Elshamy
- Artificial Insemination and Embryo Transfer Department, Animal Reproduction Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Laila E Kotram
- Immunity Department, Animal Reproduction Research Institute, Agriculture Research Center (ARC), Giza, Egypt
| | - Olfat Sayed Barakat
- Agricultural Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Sara Mohamed Mahmoud
- Biotechnology Department, Faculty of Graduate Studies and Environmental Researches, Ain Shams University, Cairo, Egypt
| |
Collapse
|
3
|
Neila-Montero M, Riesco MF, Montes-Garrido R, Palacin-Martinez C, Chamorro C, de Paz P, Alvarez M, Anel L, Anel-Lopez L. An optimized centrifugation protocol for ram sperm ensuring high sample yield, quality and fertility. Theriogenology 2022; 191:179-191. [PMID: 35998401 DOI: 10.1016/j.theriogenology.2022.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/08/2022] [Accepted: 08/03/2022] [Indexed: 01/04/2023]
Abstract
The optimization and implementation of artificial insemination (AI) in sheep is necessary to increase the livestock productivity through enhanced control of reproductive function. Sperm centrifugation is a common procedure in the ejaculate handling in AI and other assisted reproductive technologies (ART), as part of new methods of sperm analysis, selection or preservation. However, our research group previously established that this simple procedure might cause a large sperm loss and induce deleterious effects on the sperm function of the ovine species when high centrifugation forces are employed. To our knowledge, there are no studies on combined effect of extender and different centrifugal forces on ram sperm yield and quality. Furthermore, evidence of in vivo fertility rate using sperm obtained with various centrifugation forces is also lacking in this species. Thus, the objective of this work was to define the ideal conditions for ram semen centrifugation that will achieve the best quantity and quality sample to ensure unaffected fertilization ability of centrifuged ram sperm. The Experiment 1 evaluated the effect of the centrifugation procedure of two extenders (INRA 96 and Tyrode's) and two cooling protocols (Rapid and Slow Refrigeration -35 °C to 15 °C-) on sperm recovery rate and quality (motility and kinetic parameters, viability, apoptosis and mitochondrial activity). INRA 96 combined with Slow Refrigeration and Tyrode's at room temperature registered the highest sperm recovery and quality values (P ≤ 0.05). In Experiment 2, the influence of three centrifugal forces (600, 1200 and 6000×g for 10 min) was assessed immediately after centrifugation on the technical performance and sperm functionality in diluted samples with INRA 96 and Tyrode's at the conditions set out in Experiment 1. The lowest pellet weight (P ≤ 0.05) without harmful effect on sperm physiological status (P > 0.05) was achieved at 1200×g, since 6000×g induced sperm motility damage (P ≤ 0.05) with both extenders. Finally, to ensure the total safety of the centrifugation protocol, Experiment 3 tested in a combined in vitro and in vivo test the effect of these three centrifugal forces on ram sperm quality after dilution (INRA 96) and liquid storage (6-8 h at 15 °C). The damage produced by 6000×g on sperm motility (P ≤ 0.05) was maintained over time, coinciding with a lower fertility (P ≤ 0.05). In conclusion, ram sperm can be centrifuged in INRA 96 extender up to 1200×g for 10 min at 15 °C as secure values with high recovery rates and without detrimental effects on sperm quality and fertility.
Collapse
Affiliation(s)
- Marta Neila-Montero
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain.
| | - Marta F Riesco
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, 24071, León, Spain.
| | - Rafael Montes-Garrido
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain.
| | - Cristina Palacin-Martinez
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain.
| | - César Chamorro
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain.
| | - Paulino de Paz
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Cellular Biology, Department of Molecular Biology, University of León, 24071, León, Spain.
| | - Mercedes Alvarez
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain.
| | - Luis Anel
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Animal Reproduction and Obstetrics, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain.
| | - Luis Anel-Lopez
- Itra-ULE, INDEGSAL, University of León, 24071, León, Spain; Anatomy, Department of Veterinary Medicine, Surgery and Anatomy, University of León, 24071, León, Spain.
| |
Collapse
|