1
|
Fatima I, Rehman A, Ding Y, Wang P, Meng Y, Rehman HU, Warraich DA, Wang Z, Feng L, Liao M. Breakthroughs in AI and multi-omics for cancer drug discovery: A review. Eur J Med Chem 2024; 280:116925. [PMID: 39378826 DOI: 10.1016/j.ejmech.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Cancer is one of the biggest medical challenges we face today. It is characterized by abnormal, uncontrolled growth of cells that can spread to different parts of the body. Cancer is extremely complex, with genetic variations and the ability to adapt and evolve. This means we must continuously pursue innovative approaches to developing new cancer drugs. While traditional drug discovery methods have led to important breakthroughs, they also have significant limitations that make it difficult to efficiently create new, cost-effective cancer therapies. Integrating computational tools into the cancer drug discovery process is a major step forward. By harnessing computing power, we can overcome some of the inherent barriers of traditional methods. This review examines the range of computational techniques now being used, such as molecular docking, QSAR models, virtual screening, and pharmacophore modeling. It looks at recent advances in areas like machine learning and molecular simulations. The review also discusses the current challenges with these technologies and envisions future directions, underscoring how transformative these computational tools can be for creating targeted, new cancer treatments.
Collapse
Affiliation(s)
- Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxuan Meng
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hafeez Ur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Dawood Ahmad Warraich
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhibo Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijun Feng
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
2
|
Taruneshwar Jha K, Shome A, Chahat, Chawla PA. Recent advances in nitrogen-containing heterocyclic compounds as receptor tyrosine kinase inhibitors for the treatment of cancer: Biological activity and structural activity relationship. Bioorg Chem 2023; 138:106680. [PMID: 37336103 DOI: 10.1016/j.bioorg.2023.106680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/04/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
Erratic cell proliferation is the initial symptom of cancer, which can eventually metastasize to other organs. Before cancer becomes metastatic, its spread is triggered by pro-angiogenic factors including vascular endothelial growth factor receptor (VEGFR), epidermal growth factor receptor (EGFR), Platelet-derived growth factor receptor (PDGFR), fibroblast growth factor receptor (FGFR) and Platelet Factor (PF4), all of which are part of receptor tyrosine kinase (RTK) family. Receptor tyrosine kinases (RTKs) are cell-surface proteins and aresignaling enzymes that transfer ATP-phosphate to tyrosine residue substrates. Important biological processes like proliferation, differentiation, motility, and cell-cycle regulation are all possessedby these proteins. Unusual RTK expression is typically associated with cell growth abnormalities, which is linked to tumor acquisition, angiogenesis, and cancer progression. In addition to the already available medications, numerous other heterocyclic are being studied for their potential action against a variety of cancers. In the fight against cancer, in particular, these heterocycles have been used for their dynamic core scaffold and their inherent adaptability. In this review article, we have compiled last five years research work including nitrogen containing heterocycles that have targeted RTK. Herein, the SAR and activity of various compounds containing diverse heterocyclic (pyrimidine, indole, pyridine, pyrazole, benzimidazole, and pyrrole) scaffolds are discussed, and they may prove useful in the future for designing new leads against RTKs. Our focus in this manuscript is to comprehensively review the latest research on the biological activity and structural activity relationship of nitrogen compounds as RTK inhibitors. We believe that this may be an important contribution to the field, as it can help guide future research efforts and facilitate the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Keshav Taruneshwar Jha
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Abhimannu Shome
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Chahat
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, G.T Road, Moga, Punjab 142001, India.
| |
Collapse
|
3
|
Bösherz MS, Samarska IV, Gaisa NT. Scoring Systems for Immunohistochemistry in Urothelial Carcinoma. Methods Mol Biol 2023; 2684:3-25. [PMID: 37410225 DOI: 10.1007/978-1-0716-3291-8_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Immunohistochemistry is widely used in diagnostic and scientific analysis of urothelial carcinoma. Objective interpretation of staining results is mandatory for accuracy and comparability in diagnostic and therapeutic patient care as well as research.Herein we summarize and explain standardized microscopic evaluation and scoring approaches for immunohistochemical stainings. We focus on commonly used and generally feasible approaches for different cellular compartments and comment on their utility in diagnostics and research practice.
Collapse
Affiliation(s)
| | - Iryna V Samarska
- Department of Pathology, GROW - School for Oncology and Reproduction, Maastricht University, Medical Centre+, Maastricht, The Netherlands
| | - Nadine T Gaisa
- Institute of Pathology, University Hospital, RWTH Aachen University, Aachen, Germany
- German Study Group of Bladder Cancer (DFBK e.V.), Munich, Germany
| |
Collapse
|
4
|
Castro MV, Lopez-Bergami P. Cellular and molecular mechanisms implicated in the dual role of ROR2 in cancer. Crit Rev Oncol Hematol 2022; 170:103595. [PMID: 35032666 DOI: 10.1016/j.critrevonc.2022.103595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/03/2022] [Accepted: 01/10/2022] [Indexed: 02/07/2023] Open
Abstract
ROR1 and ROR2 are Wnt receptors that are critical for β-catenin-independent Wnt pathways and have been linked to processes driving tumor progression, such as cell proliferation, survival, invasion, and therapy resistance. Both receptors have garnered interest as potential therapeutic targets since they are largely absent in adult tissue, are overexpressed in several cancers, and, as members of the receptor tyrosine kinase family, are easier to target than all other components of the pathway. Unlike ROR1 which always promotes tumorigenesis, ROR2 has a very complex role in cancer acting either to promote or inhibit tumor progression in different tumor types. In the present article, we summarize the findings on ROR2 expression in cancer patients and its impact on clinical outcome. Further, we review the biological processes and signaling pathways regulated by ROR2 that explain its dual role in cancer. Finally, we describe the ongoing strategies to target ROR2 in cancer.
Collapse
Affiliation(s)
- María Victoria Castro
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina
| | - Pablo Lopez-Bergami
- Centro de Estudios Biomédicos, Básicos, Aplicados y Desarrollo (CEBBAD), Universidad Maimónides, Buenos Aires, 1405, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, 1425, Argentina.
| |
Collapse
|
5
|
Rajagopal K, Sri VB, Byran G, Gomathi S. Pyrazole Substituted 9-Anilinoacridines as HER2 Inhibitors Targeting Breast Cancer - An In-Silico Approach. Curr Drug Res Rev 2021; 14:61-72. [PMID: 34139975 DOI: 10.2174/2589977513666210617160302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/06/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Breast cancer is one of the malignant tumours which mainly affect the female population. Total 20% of the cases of breast cancer are due to overexpression of Human epidermal growth factor receptor-2 (HER2), which is the dominant tyrosine kinase receptor. In general, 9-anilinoacridine derivatives play an important role as antitumor agents due to their DNA-intercalating properties. OBJECTIVE Some novel 9-anilinoacridines substituted with pyrazole moiety(1a-z) were designed, and their HER2enzyme (PDB id-3PP0) inhibition activity was evaluated by molecular docking studies using the Glide module of Schrodinger suite 2019-4. METHODS Glide module of the Schrodinger suite was used to perform docking studies, qikprop module was used for in-silico ADMET screening, and the Prime-MM-GBSA module was used for free binding energy calculations. Using GLIDE scoring functions, we can determine the binding affinity of ligands (1a-z) towards HER2. RESULTS The inhibitory activity of ligands against HER2 was mainly due to the strong hydrophobic and hydrogen bonding interactions. Almost all the compounds 1a-z have a good binding affinity with Glide scores in the range of -4.9 to -9.75 compared to the standard drugs CK0403(-4.105) and Tamoxifen (-3.78). From the results of in-silico ADMET properties, most of the compounds fall within the recommended values. MM-GBSA binding calculations of the most potent inhibitors are more favourable. CONCLUSION The results of in-silico studies provide strong evidence for the consideration of valuable ligands in pyrazole substituted 9-anilinoacridines as potential HER2 inhibitors, and the compounds, 1v,s,r,d, a,o with significant Glide scores may produce significant anti-breast cancer activity for further development.
Collapse
Affiliation(s)
- Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Vulsi Bodhya Sri
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Gowramma Byran
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| | - Swaminathan Gomathi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, Ooty 643001, [JSS Academy of Higher Education & Research-(Deemed to be University)], The Nilgiris (Tamilnadu), India
| |
Collapse
|
6
|
Erber R, Rübner M, Davenport S, Hauke S, Beckmann MW, Hartmann A, Häberle L, Gass P, Press MF, Fasching PA. Impact of fibroblast growth factor receptor 1 (FGFR1) amplification on the prognosis of breast cancer patients. Breast Cancer Res Treat 2020; 184:311-324. [PMID: 32852708 PMCID: PMC7599145 DOI: 10.1007/s10549-020-05865-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Various aberrations in the fibroblast growth factor receptor genes FGFR1, FGFR2, and FGFR3 are found in different cancers, including breast cancer (BC). This study analyzed the impact of FGFR amplification on the BC prognosis. METHODS The study included 894 BC patients. The amplification rates of FGFR1, FGFR2, and FGFR3 were evaluated on tissue microarrays using fluorescence in situ hybridization (FISH). Associations between these parameters and prognosis were analyzed using multivariate Cox regression analyses. RESULTS FGFR1 FISH was assessable in 503 samples, FGFR2 FISH in 447, and FGFR3 FISH in 562. The FGFR1 amplification rate was 6.6% (n = 33). Increased FGFR2 copy numbers were seen in 0.9% (n = 4); only one patient had FGFR3 amplification (0.2%). Most patients with FGFR1 amplification had luminal B-like tumors (69.7%, n = 23); only 32.6% (n = 153) of patients without FGFR1 amplification had luminal B-like BC. Other patient and tumor characteristics appeared similar between these two groups. Observed outcome differences between BC patients with and without FGFR1 amplification did not achieve statistical significance; however, there was a trend toward poorer distant metastasis-free survival in BC patients with FGFR1 amplification (HR = 2.08; 95% CI 0.98 to 4.39, P = 0.05). CONCLUSION FGFR1 amplification occurs most frequently in patients with luminal B-like BC. The study showed a nonsignificant correlation with the prognosis, probably due to the small sample size. Further research is therefore needed to address the role of FGFR1 amplifications in early BC patients. FGFR2 and FGFR3 amplifications are rare in patients with primary BC.
Collapse
Affiliation(s)
- Ramona Erber
- Institute of Pathology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Krankenhausstrasse 8-10, 91054, Erlangen, Germany.
| | - Matthias Rübner
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Simon Davenport
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | | | - Matthias W Beckmann
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Krankenhausstrasse 8-10, 91054, Erlangen, Germany
| | - Lothar Häberle
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
- Biostatistics Unit, Department of Gynecology and Obstetrics, Erlangen University Hospital, Erlangen, Germany
| | - Paul Gass
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Michael F Press
- Department of Pathology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Peter A Fasching
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center EMN, Erlangen University Hospital, Friedrich Alexander University of Erlangen-Nuremberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Design, synthesis, molecular docking and antiproliferative activity of some novel benzothiazole derivatives targeting EGFR/HER2 and TS. Bioorg Chem 2020; 101:103976. [DOI: 10.1016/j.bioorg.2020.103976] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 12/13/2022]
|
8
|
Design and synthesis of diphenylpyrimidine derivatives (DPPYs) as potential dual EGFR T790M and FAK inhibitors against a diverse range of cancer cell lines. Bioorg Chem 2019; 94:103408. [PMID: 31706682 DOI: 10.1016/j.bioorg.2019.103408] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/28/2019] [Accepted: 10/28/2019] [Indexed: 01/04/2023]
Abstract
A new class of pyrimidine derivatives were designed and synthesized as potential dual FAK and EGFRT790M inhibitors using a fragment-based drug design strategy. This effort led to the identification of the two most active inhibitors, namely 9a and 9f, against both FAK (IC50 = 1.03 and 3.05 nM, respectively) and EGFRT790M (IC50 = 3.89 and 7.13 nM, respectively) kinase activity. Moreover, most of these compounds also exhibited strong antiproliferative activity against the three evaluated FAK-overexpressing pancreatic cancer (PC) cells (AsPC-1, BxPC-3, Panc-1) and two drug-resistant cancer cell lines (breast cancer MCF-7/adr cells and lung cancer H1975 cells) at concentrations lower than 6.936 μM. In addition, 9a was also effective in the in vivo assessment conducted in a FAK-driven human AsPC-1 cell xenograft mouse model. Overall, this study offers a new insight into the treatment of hard to treat cancers.
Collapse
|
9
|
Shah A, Seth AK. In Silico Identification of Novel Flavonoids Targeting Epidermal Growth Factor Receptor. Curr Drug Discov Technol 2019; 18:75-82. [PMID: 31657688 DOI: 10.2174/1570163816666191023102112] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/07/2019] [Accepted: 09/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR, ErBb) belongs to family of receptor tyrosine kinase (RTKs) that plays an important role in multiple cell signaling pathways, which includes cell growth, multiplication apoptosis, etc. Overexpression of EGFR results in development of malignant cells. Therefore, EGFR is considered one of the important target for cancer therapy. OBJECTIVE In this study, virtual screening of 329 flavonoids obtained from the Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target (NPACT) database had been performed to identify novel EGFR inhibitors. MATERIALS AND METHODS Virtual screening of flavonoids were carried out using different in silico methods, which includes molecular docking studies, prediction of druglikeness, in silico toxicity studies and bioactivity prediction. RESULTS Six flavonoids NPACT00061, NPACT00062, NPACT00066, NPACT00280, NPACT00700 and NPACT00856 were identified as potential EGFR inhibitors with good docking score and druglikeness properties. In the in silico toxicity studies, compound NPACT00061, NPACT00062, NPACT00066 and NPACT00856 were found to be carcinogenic. Finally, two flavonoids NPACT00280 and NPACT00700 were recognized as novel EGFR inhibitors. CONCLUSION Our findings suggest that compound NPACT00280 and NPACT00700 could be further explored as novel EGFR inhibitors.
Collapse
Affiliation(s)
- Ashish Shah
- Drug Design and Discovery Lab, Department of Pharmacy, Sumandeep Vidyapeeth, At Post; Piparia, Taluka: Waghodia, Dist: Vadodara-391760, Gujarat, India
| | - Avinash Kumar Seth
- Drug Design and Discovery Lab, Department of Pharmacy, Sumandeep Vidyapeeth, At Post; Piparia, Taluka: Waghodia, Dist: Vadodara-391760, Gujarat, India
| |
Collapse
|
10
|
Das S, Bhattacharya B, Das B, Sinha B, Jamatia T, Paul K. Etiologic Role of Kinases in the Progression of Human Cancers and Its Targeting Strategies. Indian J Surg Oncol 2019; 12:34-45. [PMID: 33994726 DOI: 10.1007/s13193-019-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/07/2019] [Indexed: 11/30/2022] Open
Abstract
Cancer is one of the dominant causes of death worldwide while lifelong prognosis is still inauspicious. The maturation of the cancer is seen as a process of transformation of a healthy cell into a tumor-sensitive cell, which is held entirely at the cellular, molecular, and genetic levels of the organism. Tyrosine kinases can play a major, etiologic role in the inception of malignancy and devote to the uncontrolled proliferation of cancerous cells and the progression of a tumor as well as the development of metastatic disease. Angiogenesis and oncogene activation are the major event in cell proliferation. The growth of a tumor and metastasis are fully depending on angiogenesis and lymphangiogenesis triggered by chemical signals from tumor cells in a phase of rapid growth. Tyrosine kinase inhibitors are compounds that inhibit tyrosine kinases and effective in targeting angiogenesis and blocking the signaling pathways of oncogenes. Small molecule tyrosine kinase inhibitors like afatinib, erlotinib, crizotinib, gefitinib, and cetuximab are shown to a selective cut off tactic toward the constitutive activation of an oncogene in tumor cells, and thus contemplated as promising therapeutic approaches for the diagnosis of cancer and malignancies.
Collapse
Affiliation(s)
- Sanjoy Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bireswar Bhattacharya
- Regional Institute of Pharmaceutical Science and Technology, Agartala, Tripura 799005 India
| | - Biplajit Das
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Bibek Sinha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Taison Jamatia
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Kishan Paul
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
11
|
Raquel-Cunha A, Cardoso-Carneiro D, Reis RM, Martinho O. Current Status of Raf Kinase Inhibitor Protein (RKIP) in Lung Cancer: Behind RTK Signaling. Cells 2019; 8:cells8050442. [PMID: 31083461 PMCID: PMC6562953 DOI: 10.3390/cells8050442] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
Lung cancer is the most deadly neoplasm with the highest incidence in both genders, with non-small cell lung cancer (NSCLC) being the most frequent subtype. Somatic mutations within the tyrosine kinase domain of the epidermal growth factor receptor (EGFR) gene are key drivers of NSCLC progression, with EGFR inhibitors being particularly beneficial for patients carrying the so-called “EGFR-sensitizing mutations”. However, patients eventually acquire resistance to these EGFR inhibitors, and a better knowledge of other driven and targetable proteins will allow the design of increasingly accurate drugs against patients’ specific molecular aberrations. Raf kinase inhibitory protein (RKIP) is an important modulator of relevant intracellular signaling pathways, including those controlled by EGFR, such as MAPK. It has been reported that it has metastasis suppressor activity and a prognostic role in several solid tumors, including lung cancer. In the present review, the potential use of RKIP in the clinic as a prognostic biomarker and predictor of therapy response in lung cancer is addressed.
Collapse
Affiliation(s)
- Ana Raquel-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal.
| | - Diana Cardoso-Carneiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal.
| | - Rui M Reis
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil.
| | - Olga Martinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, 4710-057 Braga/4805-017 Guimarães, Portugal.
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo 14784 400, Brazil.
| |
Collapse
|
12
|
Kalirajan R, Pandiselvi A, Gowramma B, Balachandran P. In-silico Design, ADMET Screening, MM-GBSA Binding Free Energy of Some Novel Isoxazole Substituted 9-Anilinoacridines as HER2 Inhibitors Targeting Breast Cancer. Curr Drug Res Rev 2019; 11:118-128. [PMID: 31513003 DOI: 10.2174/2589977511666190912154817] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Human Epidermal development factor Receptor-2 (HER2) is a membrane tyrosine kinase which is overexpressed and gene amplified in human breast cancers. HER2 amplification and overexpression have been linked to important tumor cell proliferation and survival pathways for 20% of instances of breast cancer. 9-aminoacridines are significant DNA-intercalating agents because of their antiproliferative properties. OBJECTIVE Some novel isoxazole substituted 9-anilinoacridines(1a-z) were designed by in-silico technique for their HER2 inhibitory activity. Docking investigations of compounds 1a-z are performed against HER2 (PDB id-3PP0) by using Schrodinger suit 2016-2. METHODS Molecular docking study for the designed molecules 1a-z are performed by Glide module, in-silico ADMET screening by QikProp module and binding free energy by Prime-MMGBSA module of Schrodinger suit. The binding affinity of designed molecules 1a-z towards HER2 was chosen based on GLIDE score. RESULTS Many compounds showed good hydrophobic communications and hydrogen bonding associations to hinder HER2. The compounds 1a-z, aside from 1z have significant Glide scores in the scope of - 4.91 to - 10.59 when compared with the standard Ethacridine (- 4.23) and Tamoxifen (- 3.78). The in-silico ADMET properties are inside the suggested about drug likeness. MM-GBSA binding of the most intense inhibitor is positive. CONCLUSION The outcomes reveal that this study provides evidence for the consideration of isoxazole substituted 9-aminoacridine derivatives as potential HER2 inhibitors. The compounds, 1s,x,v,a,j,r with significant Glide scores may produce significant anti breast cancer activity and further in vitro and in vivo investigations may prove their therapeutic potential.
Collapse
Affiliation(s)
- Rajagopal Kalirajan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University), Udhagamandalam - 643001 (Tamilnadu), India
| | - Arumugasamy Pandiselvi
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University), Udhagamandalam - 643001 (Tamilnadu), India
| | - Byran Gowramma
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, A Constituent College of JSS Academy of Higher Education & Research-(Deemed to be University), Udhagamandalam - 643001 (Tamilnadu), India
| | | |
Collapse
|
13
|
Del Curatolo A, Conciatori F, Cesta Incani U, Bazzichetto C, Falcone I, Corbo V, D'Agosto S, Eramo A, Sette G, Sperduti I, De Luca T, Marabese M, Shirasawa S, De Maria R, Scarpa A, Broggini M, Del Bufalo D, Cognetti F, Milella M, Ciuffreda L. Therapeutic potential of combined BRAF/MEK blockade in BRAF-wild type preclinical tumor models. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:140. [PMID: 29986755 PMCID: PMC6038340 DOI: 10.1186/s13046-018-0820-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 06/29/2018] [Indexed: 12/19/2022]
Abstract
Background Mounting evidence suggests that RAF-mediated MEK activation plays a crucial role in paradox MAPK (re)activation, leading to resistance and therapeutic failure with agents hitting a single step along the MAPK cascade. Methods We examined the molecular and functional effects of single and combined BRAF (dabrafenib), pan-RAF (RAF265), MEK (trametinib) and EGFR/HER2 (lapatinib) inhibition, using Western Blot and conservative isobologram analysis to assess functional synergism, and explored genetic determinants of synergistic interactions. Immunoprecipitation based assays were used to detect the interaction between BRAF and CRAF. The Mann-Whitney U test was used for comparing quantitative variables. Results Here we demonstrated that a combination of MEK and BRAF inhibitors overcomes paradoxical MAPK activation (induced by BRAF inhibitors) in BRAF-wt/RAS-mut NSCLC and PDAC in vitro. This results in growth inhibitory synergism, both in vitro and in vivo, in the majority (65%) of the cellular models analyzed, encompassing cell lines and patient-derived cancer stem cells and organoids. However, RAS mutational status is not the sole determinant of functional synergism between RAF and MEK inhibitors, as demonstrated in KRAS isogenic tumor cell line models. Moreover, in EGFR-driven contexts, paradoxical MAPK (re)activation in response to selective BRAF inhibition was dependent on EGFR family signaling and could be offset by simultaneous EGFR/HER-2 blockade. Conclusions Overall, our data indicate that RAF inhibition-induced paradoxical MAPK activation could be exploited for therapeutic purposes by simultaneously targeting both RAF and MEK (and potentially EGFR family members) in appropriate molecular contexts. KRAS mutation per se does not effectively predict therapeutic synergism and other biomarkers need to be developed to identify patients potentially deriving benefit from combined BRAF/MEK targeting. Electronic supplementary material The online version of this article (10.1186/s13046-018-0820-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anais Del Curatolo
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,ARC-Net Research Centre and Department of Pathology, University of Verona, Verona, Italy
| | - Fabiana Conciatori
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,University of Rome "La Sapienza", Rome, Italy
| | - Ursula Cesta Incani
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Chiara Bazzichetto
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy.,University of Rome "La Sapienza", Rome, Italy
| | - Italia Falcone
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Vincenzo Corbo
- ARC-Net Research Centre and Department of Pathology, University of Verona, Verona, Italy
| | - Sabrina D'Agosto
- ARC-Net Research Centre and Department of Pathology, University of Verona, Verona, Italy
| | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanni Sette
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Isabella Sperduti
- Biostatistics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Teresa De Luca
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Mirko Marabese
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Senji Shirasawa
- Central Research Institute for Advanced Molecular Medicine, Fukuoka University, Fukuoka, Japan
| | - Ruggero De Maria
- Institute of General Pathology, Catholic University of the Sacred Heart, Rome, Italy
| | - Aldo Scarpa
- ARC-Net Research Centre and Department of Pathology, University of Verona, Verona, Italy
| | - Massimo Broggini
- Laboratory of Molecular Pharmacology, Department of Oncology, IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Cognetti
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Michele Milella
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| | - Ludovica Ciuffreda
- Medical Oncology 1, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
14
|
Fan YF, Zhang W, Zeng L, Lei ZN, Cai CY, Gupta P, Yang DH, Cui Q, Qin ZD, Chen ZS, Trombetta LD. Dacomitinib antagonizes multidrug resistance (MDR) in cancer cells by inhibiting the efflux activity of ABCB1 and ABCG2 transporters. Cancer Lett 2018; 421:186-198. [PMID: 29331420 DOI: 10.1016/j.canlet.2018.01.021] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/30/2017] [Accepted: 01/08/2018] [Indexed: 12/20/2022]
Abstract
The development of multidrug resistance (MDR) to chemotherapy remains a major challenge in the treatment of cancer. Numerous mechanisms have been recognized that cause MDR, but one of the most important mechanisms is overexpression of adenosine triphosphate (ATP)-binding cassette (ABC) transporters, through which the efflux of various anticancer drugs against their concentration gradients is powered by ATP. In recent years, small molecular tyrosine kinase inhibitors (TKIs) have been developed for treatment in various human cancers overexpressing epidermal growth factor receptor (EGFR). At the same time, some TKIs have been shown to be capable of inhibiting ABC transporter-mediated MDR. Dacomitinib (PF-00299804) is a second generation, irreversible TKI, which has shown positive anticancer activities in some preclinical and clinical trials. As many TKIs are substrates or inhibitors of ABC transporters, this study investigates whether dacomitinib could interact with ABC subfamily members that mediate MDR, including ABCB1 (P-gp), ABCG2 (BCRP) and ABCC1 (MRP1). The results showed that dacomitinib at 1.0 μM significantly reversed drug resistance mediated by ABCB1 and ABCG2, but not ABCC1, doing so by antagonizing the drug efflux function in ABCB1- and ABCG2-overexpressing cell lines. The reversal effect on ABCB1-overexpressing cells is more potent than that on ABCG2-overexpressing cells. In addition, dacomitinib at reversal concentration affected neither the protein expression level nor the localization of ABCB1 and ABCG2. Therefore, the mechanisms of this modulating effect are likely to be the following: first, as an inhibitor of ABCB1 or ABCG2 transporters, dacomitinib binds to drug-substrate site in transmembrane domains (TMD) stably in a noncompetitive manner; or second, dacomitinib inhibits ATPase activity and maintains the stability of TMD conformation in a concentration-dependent manner thereby inhibiting the drug efflux function of ABCB1 or ABCG2 transporter. This study provides a useful combinational therapeutic strategy with dacomitinib and substrates of ABCB1 and/or ABCG2 transporters in ABCB1- or ABCG2-overexpressing cancers.
Collapse
Affiliation(s)
- Ying-Fang Fan
- Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Wei Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; Institute of Plastic Surgery, Weifang Medical University, Weifang, Shandong 261041, China
| | - Leli Zeng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, 510275, China
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Chao-Yun Cai
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Pranav Gupta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Qingbin Cui
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA; School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Zuo-Dong Qin
- College of Chemical and Biological Engineering, Hunan University of Science and Engineering, Yongzhou, Hunan, 425199, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| | - Louis D Trombetta
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA.
| |
Collapse
|
15
|
Influences of Anlotinib on Cytochrome P450 Enzymes in Rats Using a Cocktail Method. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3619723. [PMID: 29441353 PMCID: PMC5758843 DOI: 10.1155/2017/3619723] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
The present study aimed to investigate the effect of anlotinib (AL3818) on pharmacokinetics of cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C6, CYP2D1, CYP2D2, and CYP3A1/2) by using five cocktail probe drugs in vivo. After pretreatment for 7 days with anlotinib (treatment group) or saline (control group) by oral administration, probe drugs phenacetin, tolbutamide, omeprazole, metoprolol, and midazolam were administered to rats by oral administration. Blood samples were obtained at a series of time-points and the concentrations of five probe drugs in plasma were determined by a UHPLC-MS/MS method. The results showed that treatment with anlotinib had no significant effect on rat CYP1A2, CYP2D2, and CYP2C6. However, anlotinib had a significant inductive effect on CYP2D1 and CYP3A1/2. Therefore, caution is needed during the concomitant use of anlotinib with other drugs metabolized by CYP2D1 and CYP3A1/2 because of potential drug-anlotinib interactions.
Collapse
|
16
|
Zarei O, Hamzeh-Mivehroud M, Benvenuti S, Ustun-Alkan F, Dastmalchi S. Characterizing the Hot Spots Involved in RON-MSPβ Complex Formation Using In Silico Alanine Scanning Mutagenesis and Molecular Dynamics Simulation. Adv Pharm Bull 2017; 7:141-150. [PMID: 28507948 PMCID: PMC5426727 DOI: 10.15171/apb.2017.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
Purpose: Implication of protein-protein interactions (PPIs) in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP) is the most common mechanism of activation for this receptor. The aim of the current study was to perform in silico alanine scanning mutagenesis and to calculate binding energy for prediction of hot spots in protein-protein interface between RON and MSPβ chain (MSPβ). Methods: In this work the residues at the interface of RON-MSPβ complex were mutated to alanine and then molecular dynamics simulation was used to calculate binding free energy. Results: The results revealed that Gln193, Arg220, Glu287, Pro288, Glu289, and His424 residues from RON and Arg521, His528, Ser565, Glu658, and Arg683 from MSPβ may play important roles in protein-protein interaction between RON and MSP. Conclusion: Identification of these RON hot spots is important in designing anti-RON drugs when the aim is to disrupt RON-MSP interaction. In the same way, the acquired information regarding the critical amino acids of MSPβ can be used in the process of rational drug design for developing MSP antagonizing agents, the development of novel MSP mimicking peptides where inhibition of RON activation is required, and the design of experimental site directed mutagenesis studies.
Collapse
Affiliation(s)
- Omid Zarei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Benvenuti
- Molecular Therapeutics and Exploratory Research Laboratory, Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Turin, Italy
| | - Fulya Ustun-Alkan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
17
|
Hayano T, Matsui H, Nakaoka H, Ohtake N, Hosomichi K, Suzuki K, Inoue I. Germline Variants of Prostate Cancer in Japanese Families. PLoS One 2016; 11:e0164233. [PMID: 27701467 PMCID: PMC5049788 DOI: 10.1371/journal.pone.0164233] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 09/21/2016] [Indexed: 02/02/2023] Open
Abstract
Prostate cancer (PC) is the second most common cancer in men. Family history is the major risk factor for PC. Only two susceptibility genes were identified in PC, BRCA2 and HOXB13. A comprehensive search of germline variants for patients with PC has not been reported in Japanese families. In this study, we conducted exome sequencing followed by Sanger sequencing to explore responsible germline variants in 140 Japanese patients with PC from 66 families. In addition to known susceptibility genes, BRCA2 and HOXB13, we identified TRRAP variants in a mutually exclusive manner in seven large PC families (three or four patients per family). We also found shared variants of BRCA2, HOXB13, and TRRAP from 59 additional small PC families (two patients per family). We identified two deleterious HOXB13 variants (F127C and G132E). Further exploration of the shared variants in rest of the families revealed deleterious variants of the so-called cancer genes (ATP1A1, BRIP1, FANCA, FGFR3, FLT3, HOXD11, MUTYH, PDGFRA, SMARCA4, and TCF3). The germline variant profile provides a new insight to clarify the genetic etiology and heterogeneity of PC among Japanese men.
Collapse
Affiliation(s)
- Takahide Hayano
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Hiroshi Matsui
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Nobuaki Ohtake
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuyoshi Hosomichi
- Department of Bioinformatics and Genomics, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| | - Kazuhiro Suzuki
- Department of Urology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
- * E-mail:
| |
Collapse
|