1
|
Rajput AS, Mishra B, Rajawat D, Bhakat M. Early prediction of oestrus for herd fertility management in cattle and buffaloes - a review. Reprod Domest Anim 2024; 59:e14597. [PMID: 38798195 DOI: 10.1111/rda.14597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024]
Abstract
Oestrus is defined as a period when a female animal exhibits characteristic sexual behaviour in the presence of a mature male. Oestrous manifestation in dairy animals is due to the oestrogen (E2) effect on the central nervous system (CNS). It is a critical issue to be considered on a priority basis. Inefficient oestrous detection reduces the fertility status of the herd. The primary and most reliable indicator of oestrus is standing to be mounted by a bull or another female herd mate, signalling receptivity and the pre-ovulatory state in dairy cattle. Oestrous detection is primarily a management challenge requiring skill and vigilance. To improve the efficiency of oestrous detection in dairy cattle, visual observation is one of the best methods if done three times a day; however, heat detection aids, if combined, give better results. However, techniques like using teaser bulls, tail painting, chin ball markers, ultrasound (USG) examination, hormonal analysis and examination of cervicovaginal mucus (CVM) improve oestrous detection efficiency. Moreover, the changes in production systems have reduced the expression of oestrous behaviour among cows, due to higher oestrogen (E2) metabolism. Therefore, automated systems, such as pedometers, accelerometers and acoustic sensors like infrared thermography (IRT) and image processing, have significantly enhanced reproductive performance by facilitating oestrous detection and optimizing insemination schedules. From this review, we would conclude that oestrous detection alone contributes considerably to the reproductive status of the herd; therefore, applying different methods of oestrous detection reduces the incidence of missed oestrus and improves the fertility status of the herd.
Collapse
Affiliation(s)
- Atul Singh Rajput
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Babita Mishra
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Divya Rajawat
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - Mukesh Bhakat
- APR Division, ICAR-CIRG, Mathura, Uttar Pradesh, India
| |
Collapse
|
2
|
Andrei CR, Posastiuc FP, Constantin NT, Mitrea IL. New insights into semen separation techniques in buffaloes. Front Vet Sci 2024; 10:1347482. [PMID: 38269362 PMCID: PMC10806153 DOI: 10.3389/fvets.2023.1347482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/26/2023] [Indexed: 01/26/2024] Open
Abstract
Male infertility is frequently caused by idiopathic or unexplained reasons, resulting in an increase in demand for assisted reproductive technologies. In buffaloes, more than in other animals due to reproductive hardiness, successful fertilization needs spermatozoa to effectively transit the female reproductive system to reach the oocyte. This mechanism naturally picks high-quality sperm cells for conception, but when artificial reproductive technologies such as in vitro fertilization, intracytoplasmic sperm injection, or intrauterine insemination are utilized, alternative techniques of sperm selection are necessary. Currently, technology allows for sperm sorting based on motility, maturity, the lack of apoptotic components, proper morphology, and even sex. This study provides current knowledge on all known techniques of sperm cell sorting in buffaloes, evaluates their efficiency, and discusses the benefits and drawbacks of each approach.
Collapse
Affiliation(s)
- Crina Raluca Andrei
- Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| | - Florin Petrișor Posastiuc
- Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
- Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Nicolae Tiberiu Constantin
- Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
- Research and Development Institute for Bovine Balotești, Balotești, Romania
| | - Ioan Liviu Mitrea
- Faculty of Veterinary Medicine of Bucharest, University of Agronomic Sciences and Veterinary Medicine, Bucharest, Romania
| |
Collapse
|
3
|
Singha S, Pandey M, Jaiswal L, Dash S, Fernandes A, Kumaresan A, Maharana BR, Lathwal SS, Sarath T, Datta TK, Mohanty TK, Baithalu RK. Salivary cell-free HSD17B1 and HSPA1A transcripts as potential biomarkers for estrus identification in buffaloes ( Bubalus bubalis). Anim Biotechnol 2023; 34:2554-2564. [PMID: 35913775 DOI: 10.1080/10495398.2022.2105228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Estrus detection is a major problem in buffaloes because of the poor expression of estrus signs leading to low reproductive efficiency. Salivary transcripts analysis is a promising tool to identify biomarkers; therefore, the present study was carried out to evaluate their potential as estrus biomarkers. The levels of HSD17B1, INHBA, HSPA1A, TES transcripts were compared in saliva during estrous cycle stages [early proestrus (day -2, EP), late proestrus (day-1, LP), estrus (E), metestrus (ME) and diestrus (DE)] of cyclic heifers (n = 8) and pluriparous (n = 8) buffaloes by employing quantitative real-time polymerase chain reaction (qRT-PCR). The levels of HSD17B1 (EP/DE 1.46-2.43 fold, LP/DE 2.49-3.06 fold; E/DE 7.21-11.9-fold p < 0.01; ME/D 1.0-1.16 fold) and HSPA1A (EP/DE 0.93-2.39 fold, LP/DE 2.68-3.23 fold; E/DE 8.52-15.18 fold p < 0.01; ME/D 0.86-1.01 fold) were significantly altered during the estrus than other estrous cycle stages in both cyclic heifers and pluriparous buffaloes. Receiver operating characteristic curve analysis revealed the ability of salivary HSD17B1 (AUC 0.96; p < 0.001) and HSPA1A (AUC 0.99; p < 0.01) to differentiate E from other stages of the estrous cycle. Significantly higher levels of HSD17B1 and HSPA1A transcripts in saliva during the estrus phase suggest their biomarkers potential for estrus detection in buffaloes.
Collapse
Affiliation(s)
- Shubham Singha
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Mamta Pandey
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Latika Jaiswal
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Sangram Dash
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Abhijeet Fernandes
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Arumugan Kumaresan
- SRS-Bengaluru, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Biswa Ranjan Maharana
- Regional Research Centre, Lala Lajpat Rai University of Veterinary and Animal Science, LUVAS, Karnal, Haryana, India
| | - Surender Singh Lathwal
- Livestock Production Management, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Thulasiraman Sarath
- Department of Clinics, Madras Veterinary College, TANUVAS, Vepery, Tamil Nadu, India
| | - Tirtha K Datta
- Genomics Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- ICAR-Central Institute for Research on Buffaloes, Hisar, Haryana, India
| | - Tushar K Mohanty
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| | - Rubina Kumari Baithalu
- Animal Reproduction, Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal, Haryana, India
- Molecular Reproduction Lab, Animal Biotechnology Centre, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
4
|
Sharma P, Choudhary RK, Ratta NS, Singh ST. Investigation of conceptus stimulated gene expression in buffalo peripheral blood mononuclear cells as potential diagnostic markers of early pregnancy. J DAIRY RES 2023:1-4. [PMID: 37246145 DOI: 10.1017/s0022029923000304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Exploration of novel strategies for early pregnancy diagnosis is pivotal in enhancing the reproductive potential and monetary gains from dairy herds. In buffalo, the trophectoderm cells of the elongating conceptus secrete interferon-tau that stimulates the transcription of various genes in peripheral blood mononuclear cells (PBMC) during the peri-implantation period. We explored the differential expression of classical (ISG15) and novel (LGALS3BP and CD9) early pregnancy markers in PBMC of buffaloes during various stages of pregnancy. Natural heat was detected in buffaloes by assessing the vaginal fluid, and artificial insemination (AI) was done. Whole blood was collected from the jugular vein in EDTA-containing vacutainers for PBMC isolation before AI (0-day) and 20, 25 and 40 d post-AI. On day 40, transrectal ultrasonography examination was performed to confirm pregnancy. The inseminated non-pregnant animals served as control. Total RNA was extracted using the TRIzol method. The temporal abundance of ISG15, LGALS3BP and CD9 genes in PBMC was compared between pregnant and non-pregnant groups (n = 9 per group) using real time-qPCR. Results showed transcripts of ISG15 and LGALS3BP were more abundant at 20 d in the pregnant group compared to the 0 d and 20 d values of the non-pregnant group. However, due to variability in expression, threshold (Ct) cycle of RT-qPCR alone could not distinguish pregnant and non-pregnant animals. In conclusion, ISG15 and LGALS3BP transcripts abundance in PBMCs are potential candidate biomarkers for early prediction of buffalo pregnancy 20-days post-AI, but further work is required to allow the development of a reliable new methodology.
Collapse
Affiliation(s)
- Paramjeet Sharma
- Animal Stem Cells Lab, Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Ratan Kumar Choudhary
- Animal Stem Cells Lab, Department of Bioinformatics, College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Navdeep Singh Ratta
- Directorate of Livestock Farms, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| | - Sikh Tejinder Singh
- Directorate of Livestock Farms, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, 141004, India
| |
Collapse
|
5
|
Singh LK, Pandey M, Baithalu RK, Fernandes A, Ali SA, Jaiswal L, Pannu S, Neeraj, Mohanty TK, Kumaresan A, Datta TK, Kumar S, Mohanty AK. Comparative Proteome Profiling of Saliva Between Estrus and Non-Estrus Stages by Employing Label-Free Quantitation (LFQ) and Tandem Mass Tag (TMT)-LC-MS/MS Analysis: An Approach for Estrus Biomarker Identification in Bubalus bubalis. Front Genet 2022; 13:867909. [PMID: 35754844 PMCID: PMC9217162 DOI: 10.3389/fgene.2022.867909] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/05/2022] [Indexed: 02/05/2023] Open
Abstract
Accurate determination of estrus is essentially required for efficient reproduction management of farm animals. Buffalo is a shy breeder and does not manifest overt signs of estrus that make estrus detection difficult resulting in a poor conception rate. Therefore, identifying estrus biomarkers in easily accessible biofluid such as saliva is of utmost interest. In the current study, we generated saliva proteome profiles during proestrus (PE), estrus (E), metestrus (ME), and diestrus (DE) stages of the buffalo estrous cycle using both label-free quantitation (LFQ) and labeled (TMT) quantitation and mass spectrometry analysis. A total of 520 proteins were identified as DEPs in LFQ; among these, 59 and four proteins were upregulated (FC ≥ 1.5) and downregulated (FC ≤ 0.5) during E vs. PE, ME, and DE comparisons, respectively. Similarly, TMT-LC-MS/MS analysis identified 369 DEPs; among these, 74 and 73 proteins were upregulated and downregulated during E vs. PE, ME, and DE stages, respectively. Functional annotations of GO terms showed enrichment of glycolysis, pyruvate metabolism, endopeptidase inhibitor activity, salivary secretion, innate immune response, calcium ion binding, oocyte meiosis, and estrogen signaling. Over-expression of SERPINB1, HSPA1A, VMO1, SDF4, LCN1, OBP, and ENO3 proteins during estrus was further confirmed by Western blotting. This is the first comprehensive report on differential proteome analysis of buffalo saliva between estrus and non-estrus stages. This study generated an important panel of candidate proteins that may be considered buffalo estrus biomarkers which can be applied in the development of a diagnostic kit for estrus detection in buffalo.
Collapse
|
6
|
Hebbar A, Chandel R, Rani P, Onteru SK, Singh D. Urinary Cell-Free miR-99a-5p as a Potential Biomarker for Estrus Detection in Buffalo. Front Vet Sci 2021; 8:643910. [PMID: 34079831 PMCID: PMC8165190 DOI: 10.3389/fvets.2021.643910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Abstract
Accurate estrus detection method is the need of the hour to improve reproductive efficiency of buffaloes in dairy industry, as the currently available estrus detection methods/tools lack high sensitivity and specificity. Recently, circulating miRNAs have been shown as non-invasive biomarkers by various studies. Hence, in order to evaluate their potential as estrus biomarkers, the objective of this study was to identify and compare the levels of 10 hormone-responsive miRNAs in the urine collected at proestrus (PE), estrus (E), and diestrus (DE) phases of buffaloes (n = 3) pertaining to a discovery sample. Among 10 urinary miRNAs, the levels of bta-mir-99a-5p (E/PE 0.5-fold, P < 0.05; DE/PE 1.9-fold), bta-miR-125b (E/PE 0.5-fold; DE/PE 0.7-fold), bta-mir-145 (E/PE 1.5-fold; DE/PE 0.7-fold), bta-mir-210 (E/PE 1.2-fold, DE/PE 0.7-fold), mir-21 (E/PE 1.5-fold, DE/PE 2-fold), and bta-mir-191 (E/PE 1.3-fold; DE/PE 0.8-fold) were found to be altered during different phases of buffalo estrous cycle. In contrast, bta-mir-126-3p, bta-let-7f, bta-mir-16b, and bta-mir-378 were undetected in buffalo urine. Furthermore, a validation study in an independent group of 25 buffalo heifers showed the increased levels of urinary bta-mir-99a-5p during the DE (3.92-fold; P < 0.0001) phase as compared to the E phase. Receiver operating characteristic curve analyses also revealed the ability of urinary miR-99a-5p in distinguishing the E from the DE phase (area under the curve of 0.6464; P < 0.08). In silico analysis further showed an enrichment of miR-99a-5p putative targets in various ovarian signaling pathways, including androgen/estrogen/progesterone biosynthesis and apoptosis signaling, implicating the role of miR-99a-5p in ovarian physiology. In conclusion, significantly lower levels of bta-mir-99a-5p at the E phase than the DE phase in buffalo urine indicate its biomarker potential, which needs to be further explored in a large cohort in the future studies.
Collapse
Affiliation(s)
- Aparna Hebbar
- Animal Biochemistry Division, Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Indian Council of Agricultural Research -National Dairy Research Institute, Karnal, India
| | - Rajeev Chandel
- Animal Biochemistry Division, Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Indian Council of Agricultural Research -National Dairy Research Institute, Karnal, India
| | - Payal Rani
- Animal Biochemistry Division, Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Indian Council of Agricultural Research -National Dairy Research Institute, Karnal, India
| | - Suneel Kumar Onteru
- Animal Biochemistry Division, Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Indian Council of Agricultural Research -National Dairy Research Institute, Karnal, India
| | - Dheer Singh
- Animal Biochemistry Division, Molecular Endocrinology, Functional Genomics and Systems Biology Laboratory, Indian Council of Agricultural Research -National Dairy Research Institute, Karnal, India
| |
Collapse
|
7
|
Archunan G. Reproductive enhancement in buffalo: looking at urinary pheromones and hormones. IRANIAN JOURNAL OF VETERINARY RESEARCH 2020; 21:163-171. [PMID: 33178293 PMCID: PMC7608042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 06/11/2023]
Abstract
The success of conception in buffalo is greatly dependent on precise estrus detection and time of artificial insemination (AI). Various visual, behavioral, biochemical and gyneco-clinical parameters have been tracked closely and a cost-effective combinatorial model has been developed to detect estrus in buffaloes. Pheromones play pivotal roles in reproduction and behavior of mammals. Urine, an easily available biological material which reflects the internal status of an animal, was recruited for profiling the pheromone compounds during the various phases of estrous cycle using gas chromatography-mass spectrometry (GC-MS) analysis. Among the identified compounds, 4-methyl phenol (4-mp, p-Cresol) and 9-octadecenoic acid (Oleic acid) were found to be estrus-specific and would be promising estrus-indicators. Similarly, detection of luteinizing hormone (LH) in urine was also focused to predict the time of ovulation in buffaloes. Partial success has been obtained in the attempt to develop a cost-effective bioassay kit for estrus detection. The ongoing venture of the relevant research team is to develop a biosensor to identify estrus-specific pheromone compounds in urine. Development of a nanoparticle-based bioassay kit for detection of urinary LH for effective prediction of estrus or ovulation is also in progress.
Collapse
Affiliation(s)
- G Archunan
- Pheromone Technology Lab, Department of Animal Science, Bharathidasan University, Tiruchirappalli-620024, Tamilnadu, India
| |
Collapse
|