1
|
Benko F, Urminská D, Ďuračka M, Tvrdá E. Signaling Roleplay between Ion Channels during Mammalian Sperm Capacitation. Biomedicines 2023; 11:2519. [PMID: 37760960 PMCID: PMC10525812 DOI: 10.3390/biomedicines11092519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
In order to accomplish their primary goal, mammalian spermatozoa must undergo a series of physiological, biochemical, and functional changes crucial for the acquisition of fertilization ability. Spermatozoa are highly polarized cells, which must swiftly respond to ionic changes on their passage through the female reproductive tract, and which are necessary for male gametes to acquire their functional competence. This review summarizes the current knowledge about specific ion channels and transporters located in the mammalian sperm plasma membrane, which are intricately involved in the initiation of changes within the ionic milieu of the sperm cell, leading to variations in the sperm membrane potential, membrane depolarization and hyperpolarization, changes in sperm motility and capacitation to further lead to the acrosome reaction and sperm-egg fusion. We also discuss the functionality of selected ion channels in male reproductive health and/or disease since these may become promising targets for clinical management of infertility in the future.
Collapse
Affiliation(s)
- Filip Benko
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Dana Urminská
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| | - Michal Ďuračka
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia;
| | - Eva Tvrdá
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia; (D.U.); (E.T.)
| |
Collapse
|
2
|
Cong S, Zhang J, Pan F, Pan L, Zhang A, Ma J. Research progress on ion channels and their molecular regulatory mechanisms in the human sperm flagellum. FASEB J 2023; 37:e23052. [PMID: 37352114 DOI: 10.1096/fj.202300756r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/25/2023]
Abstract
The ion channels in sperm tail play an important role in triggering key physiological reactions, e.g., progressive motility, hyperactivation, required for successful fertilization. Among them, CatSper and KSper have been shown to be important ion channels for the transport of Ca2+ and K+ . Moreover, the voltage-gated proton channel Hv1, the sperm-specific sodium-hydrogen exchanger (sNHE), the epithelial sodium channel (ENaC), members of the temperature-sensitive TRP channel family, and the cystic fibrosis transmembrane regulator (CFTR) are also found in the flagellum. This review focuses on the latest advances in ion channels located at the flagellum, describes how they affect sperm physiological function, and summarizes some primary mutual regulation mechanism between ion channels, including PH, membrane potential, and cAMP. These ion channels may be promising targets for clinical application in infertility.
Collapse
Affiliation(s)
- Shengnan Cong
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Feng Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Aixia Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, P.R. China
| | - Jiehua Ma
- Obstetrics and Gynecology Department, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
3
|
Swain DK, Sharma P, Shah N, Sethi M, Mahajan A, Gupta S, Mishra AK, Yadav S. Introduction to the pathways involved in the activation and regulation of sperm motility: A review of the relevance of ion channels. Anim Reprod Sci 2022; 246:107052. [PMID: 35987804 DOI: 10.1016/j.anireprosci.2022.107052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/14/2022]
Abstract
To participate in sperm-oocyte fusion, spermatozoa need to be motile. In the testes, spermatozoa are immotile, although these gametes acquire the capacity for motility during the transit through the epididymis. During the period of epididymal transport from the male genital tract to the female genital tract, spermatozoa exhibit various types of motility that are regulated by complex signalling and communication mechanisms. Because motility is very dynamic, it can be affected by small changes in the external or internal environment of spermatozoa within a very short time. This indicates that regulatory membrane proteins, known as sperm ion channels, are involved in the regulation of sperm motility. Research results from studies, where there was use of electrophysiological, pharmacological, molecular and knock-out approaches, indicate ion channels are possibly involved in the regulation of sperm membrane polarisation, intracellular pH, motility, energy homeostasis, membrane integrity, capacitation, hyperactivity, acrosome reaction and fertilisation processes. In this review, there is summarisation of the key functions that ion channels have in the regulation, initiation, maintenance, and modulation of sperm motility. In addition, in this review there is highlighting of novel insights about the pathways of ion channels that are activated in spermatozoa while these gametes are located in the oviduct leading to the fertilisation capacity of these cells.
Collapse
Affiliation(s)
- Dilip Kumar Swain
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India.
| | - Pratishtha Sharma
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Nadeem Shah
- Department of Veterinary Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Manisha Sethi
- Department of Veterinary Gynaecology and Obstetrics, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Abhishek Mahajan
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| | - Shashikant Gupta
- Animal Reproduction Division, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243122, Uttar Pradesh, India
| | | | - Sarvajeet Yadav
- Sperm Signaling Laboratory, Department of Veterinary Physiology, College of Veterinary Science & Animal Husbandry, U.P. Pandit Deendayal Upadhayaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan, Mathura 281001, Uttar Pradesh, India
| |
Collapse
|
4
|
Delgado-Bermúdez A, Yeste M, Bonet S, Pinart E. A Review on the Role of Bicarbonate and Proton Transporters during Sperm Capacitation in Mammals. Int J Mol Sci 2022; 23:ijms23116333. [PMID: 35683013 PMCID: PMC9180951 DOI: 10.3390/ijms23116333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Alkalinization of sperm cytosol is essential for plasma membrane hyperpolarization, hyperactivation of motility, and acrosomal exocytosis during sperm capacitation in mammals. The plasma membrane of sperm cells contains different ion channels implicated in the increase of internal pH (pHi) by favoring either bicarbonate entrance or proton efflux. Bicarbonate transporters belong to the solute carrier families 4 (SLC4) and 26 (SLC26) and are currently grouped into Na+/HCO3− transporters and Cl−/HCO3− exchangers. Na+/HCO3− transporters are reported to be essential for the initial and fast entrance of HCO3− that triggers sperm capacitation, whereas Cl−/HCO3− exchangers are responsible for the sustained HCO3− entrance which orchestrates the sequence of changes associated with sperm capacitation. Proton efflux is required for the fast alkalinization of capacitated sperm cells and the activation of pH-dependent proteins; according to the species, this transport can be mediated by Na+/H+ exchangers (NHE) belonging to the SLC9 family and/or voltage-gated proton channels (HVCN1). Herein, we discuss the involvement of each of these channels in sperm capacitation and the acrosome reaction.
Collapse
Affiliation(s)
- Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), ES-08010 Barcelona, Spain
| | - Sergi Bonet
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
| | - Elisabeth Pinart
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003 Girona, Spain; (A.D.-B.); (M.Y.); (S.B.)
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, ES-17003 Girona, Spain
- Correspondence: ; Tel.: +34-972-419-514
| |
Collapse
|
5
|
Salahshouri S, Akbarian F, Tavalaee M, Seifati SM, Nasr-Esfahani MH. Expression of TRPV1 as A Heat Sensitive Voltage-Dependent Ion Channel and Oxidative Stress in Sperm Samples of Infertile Men with Varicocele: A Case-Control Study. CELL JOURNAL 2022; 24:323-329. [PMID: 35892235 PMCID: PMC9315213 DOI: 10.22074/cellj.2022.8038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/02/2021] [Indexed: 11/04/2022]
Abstract
Objective Transient receptor potential vanilloid 1 (TRPV1) is a heat-activated nonselective cation channel that plays important role in the spermatogenesis, capacitation, acrosome reaction and sperm/oocyte fusion. Considering the high testicular temperature and oxidative stress in varicocele condition, we aimed to assess expression of TRPV1 in sperm of infertile men. Materials and Methods In this case-control study, twenty-five men with varicocele (grade II and III) as well as twentyfive fertile were recruited. Sperm parameters, protamine deficiency (Chromomycin A3), DNA damage (TUNEL), lipid peroxidation (BODIPY), TRPV1 gene expression (real time polymerase chain reaction), TRPV1 protein (flowcytometry and immunocytochemical techniques), and acrosome reaction were assessed between fertile and varicocele groups. Results We observed a significant decrease in the sperm parameters, and also, an increased DNA damage, lipid peroxidation, and protamine deficiency in varicocele group. Although, the mRNA expression of TRPV1 was similar between varicocele and fertile groups, its expression at the protein level was significantly decreased in the varicocele group in comparison with fertile group. Additionally, the TRPV1 localization was changed from the equatorial region to the acrosomal region of the head, especially in the acrosomal region, which was more significant in the fertile group than the varicocele group after inducing acrosome reaction. Conclusion In addition to the quality of sperm parameters, and chromatin integrity that were lower significantly in varicocele group, the expression of TRPV1 protein was also lower in varicocele condition that could be associated with reduced capacitation, acrosome reaction and sperm/oocyte fusion and thereby infertility.
Collapse
Affiliation(s)
- Sahar Salahshouri
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan,
Iran,Department of Biology , Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Fahimeh Akbarian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan,
Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan,
Iran,P.O.Box: 8165131378Department of Animal BiotechnologyReproductive Biomedicine Research CenterRoyan Institute
for BiotechnologyACECRIsfahanIran
Emails:,
| | - Seyed Morteza Seifati
- Department of Biology , Medical Biotechnology Research Center, Ashkezar Branch, Islamic Azad University, Ashkezar, Yazd, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan,
Iran,P.O.Box: 8165131378Department of Animal BiotechnologyReproductive Biomedicine Research CenterRoyan Institute
for BiotechnologyACECRIsfahanIran
Emails:,
| |
Collapse
|
6
|
Lazcano-Pérez F, Bermeo K, Castro H, Salazar Campos Z, Arenas I, Zavala-Moreno A, Chávez-Villela SN, Jiménez I, Arreguín-Espinosa R, Fierro R, González-Márquez H, Garcia DE, Sánchez-Rodríguez J. A Sea Anemone Lebrunia neglecta Venom Fraction Decreases Boar Sperm Cells Capacitation: Possible Involvement of HVA Calcium Channels. Toxins (Basel) 2022; 14:toxins14040261. [PMID: 35448870 PMCID: PMC9030620 DOI: 10.3390/toxins14040261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/04/2023] Open
Abstract
Sea anemones produce venoms characterized by a complex mixture of low molecular weight compounds, proteins and peptides acting on voltage-gated ion channels. Mammal sperm cells, like neurons, are characterized by their ion channels. Calcium channels seem to be implicated in pivotal roles such as motility and capacitation. In this study, we evaluated the effect of a low molecular weight fraction from the venom of the sea anemone Lebrunia neglecta on boar sperm cells and in HVA calcium channels from rat chromaffin cells. Spermatozoa viability seemed unaffected by the fraction whereas motility and sperm capacitation were notoriously impaired. The sea anemone fraction inhibited the HVA calcium current with partial recovery and no changes in chromaffin cells’ current kinetics and current–voltage relationship. These findings might be relevant to the pharmacological characterization of cnidarian venoms and toxins on voltage-gated calcium channels.
Collapse
Affiliation(s)
- Fernando Lazcano-Pérez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo 77580, Mexico; (F.L.-P.); (S.N.C.-V.)
| | - Karina Bermeo
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (K.B.); (H.C.); (I.A.); (D.E.G.)
| | - Héctor Castro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (K.B.); (H.C.); (I.A.); (D.E.G.)
| | - Zayil Salazar Campos
- Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
- Departamento de Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09310, Mexico; (I.J.); (R.F.); (H.G.-M.)
| | - Isabel Arenas
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (K.B.); (H.C.); (I.A.); (D.E.G.)
| | - Ariana Zavala-Moreno
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Sheila Narayán Chávez-Villela
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo 77580, Mexico; (F.L.-P.); (S.N.C.-V.)
| | - Irma Jiménez
- Departamento de Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09310, Mexico; (I.J.); (R.F.); (H.G.-M.)
| | - Roberto Arreguín-Espinosa
- Departamento de Química de Biomacromoléculas, Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico;
| | - Reyna Fierro
- Departamento de Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09310, Mexico; (I.J.); (R.F.); (H.G.-M.)
| | - Humberto González-Márquez
- Departamento de Ciencias de la Salud, Div. C.B.S., Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de Mexico 09310, Mexico; (I.J.); (R.F.); (H.G.-M.)
| | - David E. Garcia
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico; (K.B.); (H.C.); (I.A.); (D.E.G.)
| | - Judith Sánchez-Rodríguez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Puerto Morelos, Quintana Roo 77580, Mexico; (F.L.-P.); (S.N.C.-V.)
- Correspondence: ; Tel.: +52(998)8710009
| |
Collapse
|
7
|
Ramal-Sanchez M, Bernabò N, Valbonetti L, Cimini C, Taraschi A, Capacchietti G, Machado-Simoes J, Barboni B. Role and Modulation of TRPV1 in Mammalian Spermatozoa: An Updated Review. Int J Mol Sci 2021; 22:4306. [PMID: 33919147 PMCID: PMC8122410 DOI: 10.3390/ijms22094306] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/26/2022] Open
Abstract
Based on the abundance of scientific publications, the polymodal sensor TRPV1 is known as one of the most studied proteins within the TRP channel family. This receptor has been found in numerous cell types from different species as well as in spermatozoa. The present review is focused on analyzing the role played by this important channel in the post-ejaculatory life of spermatozoa, where it has been described to be involved in events such as capacitation, acrosome reaction, calcium trafficking, sperm migration, and fertilization. By performing an exhaustive bibliographic search, this review gathers, for the first time, all the modulators of the TRPV1 function that, to our knowledge, were described to date in different species and cell types. Moreover, all those modulators with a relationship with the reproductive process, either found in the female tract, seminal plasma, or spermatozoa, are presented here. Since the sperm migration through the female reproductive tract is one of the most intriguing and less understood events of the fertilization process, in the present work, chemotaxis, thermotaxis, and rheotaxis guiding mechanisms and their relationship with TRPV1 receptor are deeply analyzed, hypothesizing its (in)direct participation during the sperm migration. Last, TRPV1 is presented as a pharmacological target, with a special focus on humans and some pathologies in mammals strictly related to the male reproductive system.
Collapse
Affiliation(s)
- Marina Ramal-Sanchez
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Nicola Bernabò
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Luca Valbonetti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Institute of Biochemistry and Cell Biology (CNR-IBBC/EMMA/Infrafrontier/IMPC), National Research Council, Monterotondo Scalo, 00015 Rome, Italy
| | - Costanza Cimini
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Angela Taraschi
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
- Istituto Zooprofilattico Sperimentale dell’Abruzzo e del Molise “G. Caporale”, Via Campo Boario 1, 64100 Teramo, Italy
| | - Giulia Capacchietti
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Juliana Machado-Simoes
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| | - Barbara Barboni
- Faculty of Biosciences and Technology for Food, Agriculture and Environment, University of Teramo, 64100 Teramo, Italy; (N.B.); (L.V.); (C.C.); (A.T.); (G.C.); (J.M.-S.); (B.B.)
| |
Collapse
|
8
|
Hosseini M, Tavalaee M, Rahmani M, Eskandari A, Shaygannia E, Kiani-Esfahani A, Zohrabi D, Nasr-Esfahani MH. Capsaicin improves sperm quality in rats with experimental varicocele. Andrologia 2020; 52:e13762. [PMID: 32816332 DOI: 10.1111/and.13762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Capsaicin is the main capsaicinoid in chilli peppers that have numerous biological and pharmaceutical roles in the body such as antioxidant, anti-inflammatory, anticarcinogenic, analgesic, counterirritant and antiarthritic properties. Numerous studies have shown increased oxidative stress in men with varicocele that is caused by dilation of the spermatic vein and increase of testicular temperature. Therefore, we aimed to assess the effect of Capsaicin on sperm parameters in rats with experimental varicocele. At first, we induced varicocele in 30 Wistar rats and, verify varicocele model only in 10 rats by assessment of sperm parameters, oxidative stress, DNA damage and persistent histone after 2 months. Of the remaining 20 varicocelised rats, half of them were treated with 2.5 mg/kg Capsaicin for two months and the other half served as control. Then, sperm tests were assessed, and the results showed that Capsaicin can restore the mean of sperm oxidative stress (38.78 ± 3.75 versus 58.37 ± 4.34; p < .05), sperm concentration (60.14 ± 7.66 versus 34.87 ± 5.78; p < .05) and motility (62.43 ± 3.10 versus 41.22 ± 5.11; p < .05) in varicocelised rats treated with Capsaicin compared to varicocelised rats that were not treat. Therefore, Capsaicin possibly with reduction of oxidative stress level could improve mean of sperm concentration and motility in varicocele condition.
Collapse
Affiliation(s)
- Mahshid Hosseini
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.,Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - Marziyeh Tavalaee
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohsen Rahmani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Anahita Eskandari
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Erfaneh Shaygannia
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Abbas Kiani-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Dina Zohrabi
- Department of Biology, Faculty of Science, NourDanesh Institute of Higher Education, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
9
|
Formoso K, Susperreguy S, Freichel M, Birnbaumer L. RNA-seq analysis reveals TRPC genes to impact an unexpected number of metabolic and regulatory pathways. Sci Rep 2020; 10:7227. [PMID: 32350291 PMCID: PMC7190874 DOI: 10.1038/s41598-020-61177-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/21/2020] [Indexed: 12/12/2022] Open
Abstract
The seven-member transient receptor potential canonical genes (TRPC1-7) encode cation channels linked to several human diseases. There is little understanding of the participation of each TRPC in each pathology, considering functional redundancy. Also, most of the inhibitors available are not specific. Thus, we developed mice that lack all of the TRPCs and performed a transcriptome analysis in eight tissues. The aim of this research was to address the impact of the absence of all TRPC channels on gene expression. We obtained a total of 4305 differentially expressed genes (DEGs) in at least one tissue where spleen showed the highest number of DEGs (1371). Just 21 genes were modified in all the tissues. Performing a pathway enrichment analysis, we found that many important signaling pathways were modified in more than one tissue, including PI3K (phosphatidylinositol 3-kinase/protein kinase-B) signaling pathway, cytokine-cytokine receptor interaction, extracellular matrix (ECM)-receptor interaction and circadian rhythms. We describe for the first time the changes at the transcriptome level due to the lack of all TRPC proteins in a mouse model and provide a starting point to understand the function of TRPC channels and their possible roles in pathologies.
Collapse
Affiliation(s)
- Karina Formoso
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Sebastian Susperreguy
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina
| | - Marc Freichel
- Institute of Physiology and Pathophysiology, Heidelberg University, 69120, Heidelberg, Germany
| | - Lutz Birnbaumer
- Institute for Biomedical Research (BIOMED UCA-CONICET). School of Medical Sciences, Catholic University of Argentina (UCA), Buenos Aires, C1107AFF, Argentina. .,Neurobiology Laboratory, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, North Carolina, 27709, USA.
| |
Collapse
|
10
|
Kadlec M, Ros-Santaella JL, Pintus E. The Roles of NO and H 2S in Sperm Biology: Recent Advances and New Perspectives. Int J Mol Sci 2020; 21:E2174. [PMID: 32245265 PMCID: PMC7139502 DOI: 10.3390/ijms21062174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/10/2020] [Accepted: 03/18/2020] [Indexed: 01/24/2023] Open
Abstract
After being historically considered as noxious agents, nitric oxide (NO) and hydrogen sulfide (H2S) are now listed as gasotransmitters, gaseous molecules that play a key role in a variety of cellular functions. Both NO and H2S are endogenously produced, enzymatically or non-enzymatically, and interact with each other in a range of cells and tissues. In spite of the great advances achieved in recent decades in other biological systems, knowledge about H2S function and interactions with NO in sperm biology is in its infancy. Here, we aim to provide an update on the importance of these molecules in the physiology of the male gamete. Special emphasis is given to the most recent advances in the metabolism, mechanisms of action, and effects (both physiological and pathophysiological) of these gasotransmitters. This manuscript also illustrates the physiological implications of NO and H2S observed in other cell types, which might be important for sperm function. The relevance of these gasotransmitters to several signaling pathways within sperm cells highlights their potential use for the improvement and successful application of assisted reproductive technologies.
Collapse
Affiliation(s)
| | | | - Eliana Pintus
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha 6-Suchdol, Czech Republic; (M.K.); (J.L.R.-S.)
| |
Collapse
|
11
|
Wang H, Cheng X, Tian J, Xiao Y, Tian T, Xu F, Hong X, Zhu MX. TRPC channels: Structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther 2020; 209:107497. [PMID: 32004513 DOI: 10.1016/j.pharmthera.2020.107497] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential canonical (TRPC) channels constitute a group of receptor-operated calcium-permeable nonselective cation channels of the TRP superfamily. The seven mammalian TRPC members, which can be further divided into four subgroups (TRPC1, TRPC2, TRPC4/5, and TRPC3/6/7) based on their amino acid sequences and functional similarities, contribute to a broad spectrum of cellular functions and physiological roles. Studies have revealed complexity of their regulation involving several components of the phospholipase C pathway, Gi and Go proteins, and internal Ca2+ stores. Recent advances in cryogenic electron microscopy have provided several high-resolution structures of TRPC channels. Growing evidence demonstrates the involvement of TRPC channels in diseases, particularly the link between genetic mutations of TRPC6 and familial focal segmental glomerulosclerosis. Because TRPCs were discovered by the molecular identity first, their pharmacology had lagged behind. This is rapidly changing in recent years owning to great efforts from both academia and industry. A number of potent tool compounds from both synthetic and natural products that selective target different subtypes of TRPC channels have been discovered, including some preclinical drug candidates. This review will cover recent advancements in the understanding of TRPC channel regulation, structure, and discovery of novel TRPC small molecular probes over the past few years, with the goal of facilitating drug discovery for the study of TRPCs and therapeutic development.
Collapse
Affiliation(s)
- Hongbo Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education; Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.
| | - Xiaoding Cheng
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Jinbin Tian
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuling Xiao
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
| | - Tian Tian
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Fuchun Xu
- Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China
| | - Xuechuan Hong
- State Key Laboratory of Virology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE) and Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China; Innovation Center for Traditional Tibetan Medicine Modernization and Quality Control, Medical College, Department of Chemistry and Environmental Science, School of Science, Tibet University, Lhasa 850000, China.
| | - Michael X Zhu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|