1
|
Osman NA, Gani M, Tingga RCT, Abdul-Latiff MAB, Mohd-Ridwan AR, Chan E, Md-Zain BM. Unveiling the Gut Microbiota of Pig-Tailed Macaque (Macaca nemestrina) in Selected Habitats in Malaysia. J Med Primatol 2024; 53:e12737. [PMID: 39323065 DOI: 10.1111/jmp.12737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND The gut microbiota plays an important role in primates, which may be associated with their habitat. In Malaysia, pig-tailed macaques (Macaca nemestrina) live in different habitat environments and have traditionally been used for coconut plucking for more than a century. There is currently no information regarding the gut microbiota of this macaque in Malaysia. To address this oversight, this study employed a fecal metabarcoding approach to determine the gut microbiota composition of pig-tailed macaques and establish how these microbial communities correspond with the macaque external environments of residential area, forest edge, and fragmented forest. METHODS To determine this connection, 300 paired-end sequences of 16S rRNA were amplified and sequenced using the MiSeq platform. RESULTS In the pig-tailed macaque fecal samples, we identified 17 phyla, 40 orders, 52 families, 101 genera, and 139 species of bacteria. The most prevalent bacterial families in the gut of pig-tailed macaques were Firmicutes (6.31%) and Proteobacteria (0.69%). Our analysis did not identify a significant difference between the type of environmental habitat and the gut microbiota composition of these macaques. CONCLUSIONS There was great variation in the population richness and bacterial community structure. The abundance of Firmicutes and Proteobacteria helps this macaque digest food more easily while maintaining a healthy gut microbiota diversity. Exploring the gut microbiota provides an initial effort to support pig-tailed macaque conservation in the future.
Collapse
Affiliation(s)
- Nur Azimah Osman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah, Negeri Sembilan, Malaysia
| | - Millawati Gani
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- National Wildlife Forensic Laboratory (NWFL), Department of Wildlife and National Parks (PERHILITAN) Peninsular Malaysia, Kuala Lumpur, Malaysia
| | - Roberta Chaya Tawie Tingga
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | | | - Abd Rahman Mohd-Ridwan
- Centre for Pre-University Studies, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Eddie Chan
- Genting Nature Adventure, Resorts World Awana Hotel, Pahang, Malaysia
| | - Badrul Munir Md-Zain
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Patouillat L, Hambuckers A, Adi Subrata S, Garigliany M, Brotcorne F. Zoonotic pathogens in wild Asian primates: a systematic review highlighting research gaps. Front Vet Sci 2024; 11:1386180. [PMID: 38993279 PMCID: PMC11238137 DOI: 10.3389/fvets.2024.1386180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
Introduction Ongoing global changes, including natural land conversion for agriculture and urbanization, modify the dynamics of human-primate contacts, resulting in increased zoonotic risks. Although Asia shelters high primate diversity and experiences rapid expansion of human-primate contact zones, there remains little documentation regarding zoonotic surveillance in the primates of this region. Methods Using the PRISMA guidelines, we conducted a systematic review to compile an inventory of zoonotic pathogens detected in wild Asian primates, while highlighting the coverage of primate species, countries, and pathogen groups surveyed, as well as the diagnostic methods used across the studies. Moreover, we compared the species richness of pathogens harbored by primates across diverse types of habitats classified according to their degree of anthropization (i.e., urban vs. rural vs. forest habitats). Results and discussion Searches of Scopus, PubMed, and the Global Mammal Parasite Database yielded 152 articles on 39 primate species. We inventoried 183 pathogens, including 63 helminthic gastrointestinal parasites, two blood-borne parasites, 42 protozoa, 45 viruses, 30 bacteria, and one fungus. Considering each study as a sample, species accumulation curves revealed no significant differences in specific richness between habitat types for any of the pathogen groups analyzed. This is likely due to the insufficient sampling effort (i.e., a limited number of studies), which prevents drawing conclusive findings. This systematic review identified several publication biases, particularly the uneven representation of host species and pathogen groups studied, as well as a lack of use of generic diagnostic methods. Addressing these gaps necessitates a multidisciplinary strategy framed in a One Health approach, which may facilitate a broader inventory of pathogens and ultimately limit the risk of cross-species transmission at the human-primate interface. Strengthening the zoonotic surveillance in primates of this region could be realized notably through the application of more comprehensive diagnostic techniques such as broad-spectrum analyses without a priori selection.
Collapse
Affiliation(s)
- Laurie Patouillat
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
- FARAH, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Alain Hambuckers
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
| | - Sena Adi Subrata
- Faculty of Forestry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Mutien Garigliany
- FARAH, Department of Pathology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Fany Brotcorne
- SPHERES, Primatology and Tropical Ecology Group, Faculty of Sciences, University of Liège, Liège, Belgium
| |
Collapse
|
3
|
Vogt NA, Hetman BM, Vogt AA, Pearl DL, Reid-Smith RJ, Parmley EJ, Kadykalo S, Ziebell K, Bharat A, Mulvey MR, Janecko N, Ricker N, Allen SE, Bondo KJ, Jardine CM. Using whole-genome sequence data to examine the epidemiology of antimicrobial resistance in Escherichia coli from wild meso-mammals and environmental sources on swine farms, conservation areas, and the Grand River watershed in southern Ontario, Canada. PLoS One 2022; 17:e0266829. [PMID: 35395054 PMCID: PMC8993012 DOI: 10.1371/journal.pone.0266829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) threatens the health of humans and animals and has repeatedly been detected in wild animal species across the world. This cross-sectional study integrates whole-genome sequence data from Escherichia coli isolates with demonstrated phenotypic resistance that originated from a previous longitudinal wildlife study in southern Ontario, as well as phenotypically resistant E. coli water isolates previously collected as part of a public health surveillance program. The objective of this work was to assess for evidence of possible transmission of antimicrobial resistance determinants between wild meso-mammals, swine manure pits, and environmental sources on a broad scale in the Grand River watershed, and at a local scale—for the subset of samples collected on both swine farms and conservation areas in the previous wildlife study. Logistic regression models were used to assess potential associations between sampling source, location type (swine farm vs. conservation area), and the occurrence of select resistance genes and predicted plasmids. In total, 200 isolates from the following sources were included: water (n = 20), wildlife (n = 73), swine manure pit (n = 31), soil (n = 73), and dumpsters (n = 3). Several genes and plasmid incompatibility types were significantly more likely to be identified on swine farms compared to conservation areas. Conversely, internationally distributed sequence types (e.g., ST131), extended-spectrum beta-lactamase- and AmpC-producing E. coli were isolated in lower prevalences (<10%) and were almost exclusively identified in water sources, or in raccoon and soil isolates obtained from conservation areas. Differences in the odds of detecting resistance genes and predicted plasmids among various sources and location types suggest different primary sources for individual AMR determinants, but, broadly, our findings suggest that raccoons, skunks and opossums in this region may be exposed to AMR pollution via water and agricultural sources, as well as anthropogenic sources in conservation areas.
Collapse
Affiliation(s)
- Nadine A. Vogt
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Benjamin M. Hetman
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Adam A. Vogt
- Independent Researcher, Mississauga, Ontario, Canada
| | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Stefanie Kadykalo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samantha E. Allen
- Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Kristin J. Bondo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, Guelph, Ontario, Canada
| |
Collapse
|