1
|
Rafiq K, Sani AA, Hossain MT, Hossain MT, Hadiuzzaman M, Bhuiyan MAS. Assessment of the presence of multidrug-resistant Escherichia coli, Salmonella and Staphylococcus in chicken meat, eggs and faeces in Mymensingh division of Bangladesh. Heliyon 2024; 10:e36690. [PMID: 39281621 PMCID: PMC11401041 DOI: 10.1016/j.heliyon.2024.e36690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/18/2024] Open
Abstract
The emergence of bacteria that is resistant to several drugs of clinical importance poses a threat to successful treatment, a phenomenon known as multidrug resistance that affects diverse classes of antibiotics. The purpose of this study was to evaluate the prevalence of multidrug-resistant Escherichia coli, Salmonella spp. and Staphylococcus aureus in chicken egg, meat and faeces from four districts of Bangladesh. A total of 120 chicken samples were collected from different poultry farms. Conventional culture and molecular detection methods were used for identification of bacterial isolates from the collected samples followed by antibiotic susceptibility test through the disc diffusion method, finally antibiotic resistant genes were detected by PCR. E. coli, Salmonella spp. and Staphylococcus aureus were detected in meat, egg and faecal samples. Antimicrobial susceptibility results revealed isolates from faeces were 100 % resistant to amoxicillin, while all S. aureus and Salmonella sp. from faeces were resistant to doxycycline, tetracycline and erythromycin. Salmonella spp. isolates from eggs indicated 100 % resistance to erythromycin, amoxycillin, while E. coli were 100 % resistant to erythromycin. E. coli and S. aureus from meat were 100 % resistant to amoxicillin and erythromycin. However, Salmonella spp. from eggs were 100 % susceptible to doxycycline, gentamicin, levofloxacin and tetracycline. The mecA and aac(3)-IV genes were only found in S. aureus and E. coli, respectively. The Sul1, tetB, and aadA1 were highest in Salmonella spp. and S. aureus, while the sul1, tetA and bla SHV were higher in E. coli. Isolates from all samples were multidrug resistant. These findings indicate a high risk of transmission of resistance genes from microbial contamination to food of animal origin. The study emphasizes the need for effective biosecurity measures, responsible antibiotic use, and strict regulations in poultry production to prevent the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Kazi Rafiq
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Aminatu Abubakar Sani
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University Sokoto, Nigeria
| | - Muhammad Tofazzal Hossain
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Tarek Hossain
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Md Hadiuzzaman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Mohammad Abdus Sattar Bhuiyan
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
- Department of Cardiology, Mymensingh Medical College, Mymensingh, 2202, Bangladesh
| |
Collapse
|
2
|
Wang W, Dang G, Hao W, Li A, Zhang H, Guan S, Ma T. Dietary Supplementation of Compound Probiotics Improves Intestinal Health by Modulated Microbiota and Its SCFA Products as Alternatives to In-Feed Antibiotics. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10314-3. [PMID: 38904897 DOI: 10.1007/s12602-024-10314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2024] [Indexed: 06/22/2024]
Abstract
Enterococcus faecium, Bifidobacterium, and Pediococcus acidilactici, as intestinal probiotics, have been proved to play a positive role in treating intestinal diseases, promoting growth and immune regulation in poultry. The aim of this study was to evaluate the effect of compound probiotics on growth performance, digestive enzyme activity, intestinal microbiome characteristics, as well as intestinal morphology in broiler chickens. Treatment diets with chlortetracycline and compound probiotics were used for two groups of sixty broilers each throughout the feeding process. Another group was fed the basal diet. The BW (2589.41 ± 13.10 g vs 2422.50 ± 19.08 g) and ADG (60.57 ± 0.31 g vs 56.60 ± 0.45 g) of the compound probiotics added feed treatment group were significantly increased, and the FCR was significantly decreased (P < 0.05). The supplementation of a compound probiotics enhanced the abundance of beneficial bacteria such as Lactobacillus, Faecalibacterium, and norank_f_norank_o_Clostridia_vadinBB60_group (P < 0.05), and modulated the cecal microbiota structure, thereby promoting the production of short-chain fatty acids (SCFAs) and elevating their levels (P < 0.05), particularly propionic and butyric acids. Furthermore, the administration of the compound probiotics supplements significantly enhanced the villi height, V/C ratio, and reduced the crypt depth (P < 0.05). In addition, the activity of digestive enzymes in the duodenum and jejunum was elevated (P < 0.05). Collectively, the selected compound probiotics supplemented in this experiment have demonstrated efficacy, warranting further application in practical production settings as a viable alternative to antibiotics, thereby facilitating efficient production and promoting gastrointestinal health.
Collapse
Affiliation(s)
- Wenxing Wang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guoqi Dang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wei Hao
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, 201203, China
| | - Anping Li
- Department of Animal Nutrition and Health, DSM (China) Co., Ltd, Shanghai, 201203, China
| | - Hongfu Zhang
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shu Guan
- Department of Animal Nutrition and Health, DSM Singapore Industrial Pte. Ltd, Singapore, 117440, Singapore
| | - Teng Ma
- State Key Laboratory of Livestock and Poultry Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Mudenda S, Bumbangi FN, Yamba K, Munyeme M, Malama S, Mukosha M, Hadunka MA, Daka V, Matafwali SK, Siluchali G, Mainda G, Mukuma M, Hang’ombe BM, Muma JB. Drivers of antimicrobial resistance in layer poultry farming: Evidence from high prevalence of multidrug-resistant Escherichia coli and enterococci in Zambia. Vet World 2023; 16:1803-1814. [PMID: 37859964 PMCID: PMC10583887 DOI: 10.14202/vetworld.2023.1803-1814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 10/21/2023] Open
Abstract
Background and Aim Inappropriate use of antimicrobials exacerbates antimicrobial resistance (AMR) in the poultry sector. Information on factors driving AMR in the layer poultry sector is scarce in Zambia. This study examined the drivers of AMR in the layer poultry sector in the Lusaka and Copperbelt Provinces of Zambia. Materials and Methods This cross-sectional study employed a structured questionnaire in 77 layer poultry farms in the provinces of Lusaka and Copperbelt, Zambia, from September 2020 to April 2021. Data analysis was conducted using Stata version 16.1. Antimicrobial resistance was defined as the presence of multidrug resistance (MDR) isolates. Multivariable regression analysis was used to identify drivers of AMR. Results In total, 365 samples were collected, from which 339 (92.9%) Escherichia coli and 308 (84.4%) Enterococcus spp. were isolated. Multidrug resistance was identified in 39% of the E. coli and 86% of the Enterococcus spp. The overall prevalence of AMR in layer poultry farms was 51.7% (95% confidence interval [CI]: 40.3%-63.5%). Large-scale farmers (Adjusted odds ratio [AOR] = 0.20, 95% CI: 0.04%-0.99%) than small-scale and farmers who were aware of AMR than those who were unaware (AOR = 0.26, 95% CI: 0.08%-0.86%) were less likely to experience AMR problems. Conclusion This study found a high prevalence of AMR in layer poultry farming linked to the type of farm management practices and lack of AMR awareness. Evidence of high MDR in our study is of public health concern and requires urgent attention. Educational interventions must increase AMR awareness, especially among small- and medium-scale poultry farmers.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Flavien Nsoni Bumbangi
- Department of Medicine and Clinical Sciences, School of Medicine, Eden University, Lusaka, Zambia
| | - Kaunda Yamba
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Sydney Malama
- Department of Pathology and Microbiology Laboratory, University Teaching Hospitals, Lusaka, Zambia
| | - Moses Mukosha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka, Zambia
| | | | - Victor Daka
- Department of Public Health, Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola, Zambia
| | - Scott Kaba Matafwali
- Department of Clinical Research, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Godfrey Siluchali
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
- Department of Anatomy and Physiological Sciences, Institute of Basic and Biomedical Sciences, Levy Mwanawasa Medical University, Lusaka, Zambia
| | - Geoffrey Mainda
- Food and Agriculture Organization (FAO) of the United Nations, House No. 5 Chaholi, off Addis Ababa drive, Lusaka, Zambia
| | - Mercy Mukuma
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia
| | - Bernard Mudenda Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| |
Collapse
|
4
|
Sani AA, Rafiq K, Hossain MT, Akter F, Haque A, Hasan MI, Sachi S, Mustari A, Islam MZ, Alam MM. Screening and quantification of antibiotic residues in poultry products and feed in selected areas of Bangladesh. Vet World 2023; 16:1747-1754. [PMID: 37766715 PMCID: PMC10521182 DOI: 10.14202/vetworld.2023.1747-1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Antibiotic residues in livestock farming have been identified as a potential cause of antimicrobial resistance in humans and animals. This study aimed to determine whether antibiotic residues were present in the chicken meat, eggs, feces, and feed collected from all four districts in the Mymensingh division of Bangladesh. Materials and Methods To detect antibiotic residues in the collected samples, qualitative thin-layer chromatography (TLC) and quantitative high-performance liquid chromatography (HPLC) were used. A total of 230 samples were analyzed for antibiotic residues of commonly used 11 antibiotics. Out of these, 40 meat and 40 feces samples were collected from broilers and layers, 30 egg samples from ducks and layers, and 120 feed samples from broilers and layers from the study area. Thin-layer chromatography was used to screen the presence of antibiotic residues; TLC-positive samples were then subjected to further HPLC analysis to determine the residue concentrations. Results Thin-layer chromatography analysis revealed that 23.5% of the tested samples contained residues from six different antibiotic classes (tetracyclines, quinolones, beta-lactams, sulfonamides, aminoglycosides, and macrolides). Thin-layer chromatography analysis showed that 35% and 25% of the meat samples were positive for residues from the broiler and layer, respectively. About 15% and 30% of layer and duck egg samples had positive residues, respectively. Out of 120 feed samples analyzed, about 15.8% had various antibiotic residues. In addition, feces samples from broilers and layers had 50% and 35% antibiotic residues, respectively. A total of 2.5% meat and 3.3% egg samples had antibiotic residues above the maximum residue limit (MRL). Based on the findings of this study, the highest percentage of oxytetracycline, followed by doxycycline and ciprofloxacin, were detected in feed samples, and oxytetracycline was detected in meat and egg samples. Conclusion This study clearly showed the misuse of antibiotics in the poultry sector in Bangladesh. Although antibiotic residues below the MRL level are suitable for human consumption, they may result in antimicrobial drug resistance to pathogens.
Collapse
Affiliation(s)
- Aminatu Abubakar Sani
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kazi Rafiq
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tarek Hossain
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Fatema Akter
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Azizul Haque
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Izmal Hasan
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sabbya Sachi
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Afrina Mustari
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Zahorul Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Mahbub Alam
- Department of Medicine, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
5
|
Antimicrobial Resistance Profile of Common Foodborne Pathogens Recovered from Livestock and Poultry in Bangladesh. Antibiotics (Basel) 2022; 11:antibiotics11111551. [PMID: 36358208 PMCID: PMC9686756 DOI: 10.3390/antibiotics11111551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Multidrug-resistant (MDR) foodborne pathogens have created a great challenge to the supply and consumption of safe & healthy animal-source foods. The study was conducted to identify the common foodborne pathogens from animal-source foods & by-products with their antimicrobial drug susceptibility and resistance gene profile. The common foodborne pathogens Escherichia coli (E. coli), Salmonella, Streptococcus, Staphylococcus, and Campylobacter species were identified in livestock and poultry food products. The prevalence of foodborne pathogens was found higher in poultry food & by-product compared with livestock (p < 0.05). The antimicrobial drug susceptibility results revealed decreased susceptibility to penicillin, ampicillin, amoxicillin, levofloxacin, ciprofloxacin, tetracycline, neomycin, streptomycin, and sulfamethoxazole-trimethoprim whilst gentamicin was found comparatively more sensitive. Regardless of sources, the overall MDR pattern of E. coli, Salmonella, Staphylococcus, and Streptococcus were found to be 88.33%, 75%, 95%, and 100%, respectively. The genotypic resistance showed a prevalence of blaTEM, blaSHV, blaCMY, tetA, tetB, sul1, aadA1, aac(3)-IV, and ereA resistance genes. The phenotype and genotype resistance patterns of isolated pathogens from livestock and poultry had harmony and good concordance, and sul1 & tetA resistance genes had a higher prevalence. Good agricultural practices along with proper biosecurity may reduce the rampant use of antimicrobial drugs. In addition, proper handling, processing, storage, and transportation of foods may decline the spread of MDR foodborne pathogens in the food chain.
Collapse
|
6
|
Mudenda S, Mukosha M, Godman B, Fadare J, Malama S, Munyeme M, Hikaambo CN, Kalungia AC, Hamachila A, Kainga H, Bumbangi FN, Daka V, Mfune RL, Mainda G, Mufwambi W, Mpundu P, Kasanga M, Saad SAM, Muma JB. Knowledge, Attitudes, and Practices of Community Pharmacy Professionals on Poultry Antibiotic Dispensing, Use, and Bacterial Antimicrobial Resistance in Zambia: Implications on Antibiotic Stewardship and WHO AWaRe Classification of Antibiotics. Antibiotics (Basel) 2022; 11:1210. [PMID: 36139990 PMCID: PMC9495135 DOI: 10.3390/antibiotics11091210] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Globally, the inappropriate dispensing and use of antibiotics in animals has contributed to the development of bacterial antimicrobial resistance (AMR). In Zambia, there is insufficient information among community pharmacy professionals on antibiotic use (ABU) and AMR in food-producing animals. This study assessed community pharmacy professionals' knowledge, attitudes, and practices regarding poultry antibiotic dispensing, use, and bacterial AMR in the Lusaka district of Zambia. A cross-sectional study was conducted among 178 community pharmacy professionals between February and April 2022 using a semi-structured questionnaire. Data were analyzed using Stata version 17. Of the total participants (n = 178), 51.1% (n = 91) were pharmacists. The most dispensed antibiotic was oxytetracycline, a Watch antibiotic, mainly without prescriptions. Good knowledge of ABU and AMR was associated with work experience for more than one year (p = 0.016), while good practices were associated with male gender (p = 0.039) and work experience of more than one year (p = 0.011). The study found moderate knowledge, positive attitudes, and moderate practices of pharmacy professionals on poultry ABU and AMR. There was high dispensing of poultry antibiotics without prescriptions, which calls for strict implementation of antimicrobial stewardship and surveillance programs in poultry production in Zambia to reduce AMR.
Collapse
Affiliation(s)
- Steward Mudenda
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Moses Mukosha
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Brian Godman
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 346, United Arab Emirates
- Department of Pharmacoepidemiology, Strathclyde Institute of Pharmacy and Biomedical Science (SIPBS), University of Strathclyde, Glasgow G4 0RE, UK
| | - Joseph Fadare
- Department of Pharmacology and Therapeutics, Ekiti State University College of Medicine, Ado-Ekiti 362103, Nigeria
| | - Sydney Malama
- Department of Biological Sciences, School of Natural Sciences, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Musso Munyeme
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | | | - Aubrey Chichonyi Kalungia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Audrey Hamachila
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Henson Kainga
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Department of Veterinary Epidemiology and Public Health, Faculty of Veterinary Medicine, University of Agriculture and Natural Resources, Lilongwe P.O. Box 219, Malawi
| | - Flavien Nsoni Bumbangi
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- School of Medicine, Eden University, Lusaka P.O. Box 37727, Zambia
| | - Victor Daka
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola P.O. Box 21692, Zambia
| | - Ruth Lindizyani Mfune
- Michael Chilufya Sata School of Medicine, Copperbelt University, Ndola P.O. Box 21692, Zambia
| | - Geoffrey Mainda
- Department of Veterinary Services, Central Veterinary Research Institute, Ministry of Fisheries and Livestock, Lusaka P.O. Box 50060, Zambia
| | - Webrod Mufwambi
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Prudence Mpundu
- Department of Environmental and Occupational Health, Levy Mwanawasa Medical University, School of Health Sciences, Lusaka P.O. Box 33991, Zambia
| | - Maisa Kasanga
- College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Shereen Ahmed Mohammed Saad
- Africa Center of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
- College of Veterinary Science, University of Bahr El-Ghazal, Wau P.O. Box 10739, South Sudan
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| |
Collapse
|
7
|
Marquez J, Marrugo Padilla A, Méndez Cuadro D, Rodríguez Cavallo E. Residues of tetracyclines and β-lactams antibiotics induce carbonylation of chicken breast. F1000Res 2021; 10:575. [PMID: 35316938 PMCID: PMC8917320 DOI: 10.12688/f1000research.53863.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Worldwide, chicken meat is widely consumed due to its low cost, high nutritional value and non-interference with religious or cultural beliefs. However, during animal husbandry chickens are exposed to many chemical substances, including tetracyclines and β-lactams, which are used to prevent and cure several infections. Some residues of these compounds may bioaccumulate and be present in chicken meat after slaughtering, promoting oxidative reactions. Methods: In order to evaluate in vitro carbonylation induced by tetracyclines and β-lactams residues, a proteomic approach was used. For this, chicken muscle was individually contaminated with tetracyclines (tetracycline, chlortetracycline, oxytetracycline, and doxycycline) and β-lactams (ampicillin, benzathine penicillin, dicloxacillin and oxacillin) at 0.5, 1.0 and 1.5 times their maximum residue level (MRL). Then, sarcoplasmic, myofibrillar and insoluble proteins were extracted and their content were measured using the Bradford method. Protein carbonylation was measured using the 2,4-Dinitrophenylhydrazine alkaline method. Results: Residues of tetracyclines and β-lactams induced in vitro carbonylation on sarcoplasmic, myofibrillar and insoluble proteins even at 0.5MRL concentrations ( p<0.05). When comparing the carbonylation induced by both antibiotics no differences were found ( p>0.05). Variables such as the partition coefficient (log P) and the concentration of these antibiotics showed a high correlation with the oxidative capacity of tetracyclines and β-lactams on chicken breast proteins. Conclusions: This study shows that the presence of tetracyclines and β-lactams residues at MRLs concentrations promotes in vitro carbonylation on chicken breast proteins. Our results provide important insights about the impact of antibiotics on the integrity of meat proteins intended for human consumption.
Collapse
Affiliation(s)
- Johana Marquez
- Analytical Chemistry and Biomedicine Group, University of Cartagena, Cartagena, Bolívar, 130001, Colombia
- Medical research group (GINUMED), Corporación Universitaria Rafael Núñez, Cartagena, Bolívar, 130001, Colombia
| | - Albeiro Marrugo Padilla
- Analytical Chemistry and Biomedicine Group, University of Cartagena, Cartagena, Bolívar, 130001, Colombia
| | - Darío Méndez Cuadro
- Analytical Chemistry and Biomedicine Group, University of Cartagena, Cartagena, Bolívar, 130001, Colombia
| | - Erika Rodríguez Cavallo
- Analytical Chemistry and Biomedicine Group, University of Cartagena, Cartagena, Bolívar, 130001, Colombia
| |
Collapse
|