1
|
Pezo F, Contreras MJ, Zambrano F, Uribe P, Risopatron J, Andrade AFCD, Yeste M, Sánchez R. Thawing of cryopreserved sperm from domestic animals: Impact of temperature, time, and addition of molecules to thawing/insemination medium. Anim Reprod Sci 2024; 268:107572. [PMID: 39128319 DOI: 10.1016/j.anireprosci.2024.107572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
In recent decades, there has been a growing interest in optimizing the protocols intended to sperm cryopreservation in domestic animals. These protocols include initial cooling, freezing, and thawing. While different attempts have been devised to improve sperm cryopreservation, the efficiency of this reproductive biotechnology is still far from being optimal. Furthermore, while much attention in improving cooling/freezing, less emphasis has been made in how thawing can be ameliorated. Despite this, the conditions through which, upon thawing, sperm return to physiological temperatures are much relevant, given that these cells must travel throughout the female genital tract until they reach the utero-tubal junction. Moreover, the composition of the media used for artificial insemination (AI) may also affect sperm survival, which is again something that one should bear because of the long journey that sperm must make. Furthermore, sperm quality and functionality decrease dramatically during post-thawing incubation time. Added to that, the deposition of the thawed sperm suspension devoid of seminal plasma in some species during an AI is accompanied by a leukocyte migration to the uterine lumen and with it the activation of immune mechanisms. Because few reviews have focused on the evidence gathered after sperm thawing, the present one aims to compile and discuss the available information concerning ruminants, pigs and horses.
Collapse
Affiliation(s)
- Felipe Pezo
- Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco, Chile
| | - María José Contreras
- Instituto de Ciencias Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco, Chile
| | - Fabiola Zambrano
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Pamela Uribe
- Center of Excellence in Translational Medicine-Scientific and Technological Bioresource Nucleus (CEMT-BIOREN), Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Department of Internal Medicine, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile
| | - Jennie Risopatron
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile
| | - Andre Furugen Cesar de Andrade
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marc Yeste
- Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Raúl Sánchez
- Department of Preclinical Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco, Chile; Center of Excellence in Reproductive Biotechnology (BIOREN-CEBIOR), Faculty of Medicine, University of La Frontera, Temuco, Chile.
| |
Collapse
|
2
|
Ulloa del Carpio N, Alvarado-Corella D, Quiñones-Laveriano DM, Araya-Sibaja A, Vega-Baudrit J, Monagas-Juan M, Navarro-Hoyos M, Villar-López M. Exploring the chemical and pharmacological variability of Lepidium meyenii: a comprehensive review of the effects of maca. Front Pharmacol 2024; 15:1360422. [PMID: 38440178 PMCID: PMC10910417 DOI: 10.3389/fphar.2024.1360422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/30/2024] [Indexed: 03/06/2024] Open
Abstract
Maca (Lepidium meyenii), a biennial herbaceous plant indigenous to the Andes Mountains, has a rich history of traditional use for its purported health benefits. Maca's chemical composition varies due to ecotypes, growth conditions, and post-harvest processing, contributing to its intricate phytochemical profile, including, macamides, macaenes, and glucosinolates, among other components. This review provides an in-depth revision and analysis of Maca's diverse bioactive metabolites, focusing on the pharmacological properties registered in pre-clinical and clinical studies. Maca is generally safe, with rare adverse effects, supported by preclinical studies revealing low toxicity and good human tolerance. Preclinical investigations highlight the benefits attributed to Maca compounds, including neuroprotection, anti-inflammatory properties, immunoregulation, and antioxidant effects. Maca has also shown potential for enhancing fertility, combating fatigue, and exhibiting potential antitumor properties. Maca's versatility extends to metabolic regulation, gastrointestinal health, cardio protection, antihypertensive activity, photoprotection, muscle growth, hepatoprotection, proangiogenic effects, antithrombotic properties, and antiallergic activity. Clinical studies, primarily focused on sexual health, indicate improved sexual desire, erectile function, and subjective wellbeing in men. Maca also shows promise in alleviating menopausal symptoms in women and enhancing physical performance. Further research is essential to uncover the mechanisms and clinical applications of Maca's unique bioactive metabolites, solidifying its place as a subject of growing scientific interest.
Collapse
Affiliation(s)
- Norka Ulloa del Carpio
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
| | - Diego Alvarado-Corella
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | | | - Andrea Araya-Sibaja
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - José Vega-Baudrit
- Laboratorio Nacional de Nanotecnología, LANOTEC-CeNAT-CONARE, San José, Costa Rica
| | - Maria Monagas-Juan
- United States Pharmacopeia (USP) Dietary Supplements and Herbal Medicines, Rockville, MD, United States
| | - Mirtha Navarro-Hoyos
- Bioactivity and Sustainable Development (BIODESS) Group, Department of Chemistry, University of Costa Rica (UCR), San Jose, Costa Rica
| | - Martha Villar-López
- Centro de Investigación Clínica de Medicina Complementaria—CICMEC, Gerencia de Medicina Complementaria, Seguro Social de Salud-EsSalud, Lima, Peru
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
3
|
Cocchia N, Merlo B, Calabria A, Spada S, Iacono E, Ciarcia R, Damiano S, Giordano E, Laperuta F, Gasparrini B, Del Prete C. Effect of Maca aqueous extract addition to a freezing extender for canine semen. Vet Res Commun 2024; 48:301-307. [PMID: 37676460 DOI: 10.1007/s11259-023-10163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/27/2023] [Indexed: 09/08/2023]
Abstract
This study investigated the effect of the addition of Lepidium meyenii (Maca) to the freezing extender on the post-thaw quality of dog semen. Ten canine ejaculates were frozen following a two-step protocol using a tris-glucose-citrate egg yolk extender with or without the addition of 10 µl/mL of aqueous extract of Maca (Maca and ctrl groups, respectively). Prior to (fresh semen) and after freezing (T0) sperm motility, kinetic parameters, viability and mitochondrial membrane potential (MMP), as well as the levels of malondialdehyde (MDA) were evaluated. In addition, sperm motility, kinetic parameters, viability and MMP were examined up to 2 h of incubation of 37 °C after thawing (T1 and T2) to evaluate thermo-resistance. The addition of Maca reduced MDA concentration at T0 (p < 0.05) and increased total motility, the percentage of sperm with medium velocity and WOB at T1. Progressive motility decreased (p < 0.05) at T1 in the ctrl group, whereas it was not affected in Maca group at any time point. In addition, the percentage of hyperactivated spermatozoa remained constant at T1 in the ctrl, while in the Maca group an increase (p < 0.05) of this parameter was recorded. Although no differences were found for MMP between groups at any time points, a decrease of viable sperm with low MMP was observed in ctrl group between T0 and T1 and in Maca group between T1 and T2. The addition of Maca prior freezing reduced the extent of lipid peroxidation and activated canine sperm motility and hyperactivation after thawing.
Collapse
Affiliation(s)
- Natascia Cocchia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Barbara Merlo
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alfonso Calabria
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy.
| | - Stefano Spada
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Eleonora Iacono
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | | | | | - Bianca Gasparrini
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Chiara Del Prete
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Levano G, Quispe J, Vargas D, García M, López A, Aguila L, Valdivia M. Effect of Atomized Black Maca ( Lepidium meyenii) Supplementation in the Cryopreservation of Alpaca ( Vicugna pacos) Epididymal Spermatozoa. Animals (Basel) 2023; 13:2054. [PMID: 37443852 DOI: 10.3390/ani13132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/06/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023] Open
Abstract
Artificial insemination is an important assisted reproductive technology that has been applied in several mammalian species. However, successful cryopreservation of semen of South American camelids has been limited, hindering the commercial application of artificial insemination in alpaca species. In this scenario, the addition of antioxidants to semen extenders provides a strategy to improve the freezability of mammalian sperm. Bioactive metabolites from natural extracts of black maca have shown valuable antioxidant properties. Thus, the objective of this study was to evaluate the effect of the addition of atomized black maca in the freezing medium of epididymal spermatozoa of alpacas. Fifteen pairs of epididymis were collected from a local slaughterhouse. Each sample was divided into six groups: (1) fresh, (2) yolk medium (YM), (3) 10 mg/mL maca, (4) 20 mg/mL maca, (5) 30 mg/mL maca, and (6) resveratrol (as an antioxidant control). Sperm cryopreservation was performed through the slow freezing method. Markers associated with functionality, such as motility, viability, and plasma membrane integrity, as well as markers associated with oxidative damage, such as DNA integrity, total ROS production, and mitochondrial function, were analyzed. The results show that the supplementation with black maca (20 mg/mL) improved the sperm motility, viability, plasma membrane integrity, and mitochondrial function evaluated according to an index of formazan deposits. Similarly, the ROS production decreased with maca at 20 mg/mL, although the DNA integrity did not show any differences among the groups. These results suggest that maca at 20 mg/mL has cytoprotective effects during freezing/thawing of epididymal sperm of alpaca species. Further research will be focused on assessing the effects of maca supplementation on semen extenders by using biomolecular markers (proAKAP4) associated with fertility.
Collapse
Affiliation(s)
- Gloria Levano
- Laboratory of Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Juana Quispe
- Laboratory of Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Diego Vargas
- Laboratory of Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Marlon García
- Laboratory of Genetics, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Alberto López
- Laboratory of Genetics, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| | - Luis Aguila
- Laboratory of Reproduction, Centre of Reproductive Biotechnology (CEBIOR-BIOREN), Universidad de La Frontera, Temuco 4811322, Chile
| | - Martha Valdivia
- Laboratory of Reproductive Physiology, Biological Sciences Faculty, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru
| |
Collapse
|