1
|
Dume B, Licarete E, Banciu M. Advancing cancer treatments: The role of oligonucleotide-based therapies in driving progress. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102256. [PMID: 39045515 PMCID: PMC11264197 DOI: 10.1016/j.omtn.2024.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Although recent advancements in cancer immunology have resulted in the approval of numerous immunotherapies, minimal progress has been observed in addressing hard-to-treat cancers. In this context, therapeutic oligonucleotides, including interfering RNAs, antisense oligonucleotides, aptamers, and DNAzymes, have gained a central role in cancer therapeutic approaches due to their capacity to regulate gene expression and protein function with reduced toxicity compared with conventional chemotherapeutics. Nevertheless, systemic administration of naked oligonucleotides faces many extra- and intracellular challenges that can be overcome by using effective delivery systems. Thus, viral and non-viral carriers can improve oligonucleotide stability and intracellular uptake, enhance tumor accumulation, and increase the probability of endosomal escape while minimizing other adverse effects. Therefore, gaining more insight into fundamental mechanisms of actions of various oligonucleotides and the challenges posed by naked oligonucleotide administration, this article provides a comprehensive review of the recent progress on oligonucleotide delivery systems and an overview of completed and ongoing cancer clinical trials that can shape future oncological treatments.
Collapse
Affiliation(s)
- Bogdan Dume
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Centre of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| |
Collapse
|
2
|
S. V. S, Augustine D, Mushtaq S, Baeshen HA, Ashi H, Hassan RN, Alshahrani M, Patil S. Revitalizing oral cancer research: Crispr-Cas9 technology the promise of genetic editing. Front Oncol 2024; 14:1383062. [PMID: 38915370 PMCID: PMC11194394 DOI: 10.3389/fonc.2024.1383062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/08/2024] [Indexed: 06/26/2024] Open
Abstract
This review presents an in-depth analysis of the immense potential of CRISPR-Cas9 technology in revolutionizing oral cancer research. It underscores the inherent limitations of conventional treatments while emphasizing the pressing need for groundbreaking approaches. The unparalleled capability of CRISPR-Cas9 to precisely target and modify specific genes involved in cancer progression heralds a new era in therapeutic intervention. Employing genome-wide CRISPR screens, vulnerabilities in oral cancer cells can be identified, thereby unravelling promising targets for therapeutic interventions. In the realm of oral cancer, the disruptive power of CRISPR-Cas9 manifests through its capacity to perturb genes that are intricately associated with drug resistance, consequently augmenting the efficacy of chemotherapy. To address the challenges that arise, this review diligently examines pertinent issues such as off-target effects, efficient delivery mechanisms, and the ethical considerations surrounding germline editing. Through precise gene editing, facilitated by CRISPR/Cas9, it becomes possible to overcome drug resistance by rectifying mutations, thereby enhancing the efficacy of personalized treatment strategies. This review delves into the prospects of CRISPR-Cas9, illuminating its potential applications in the domains of medicine, agriculture, and biotechnology. It is paramount to emphasize the necessity of ongoing research endeavors and the imperative to develop targeted therapies tailored specifically for oral cancer. By embracing this comprehensive overview, we can pave the way for ground-breaking treatments that instill renewed hope for enhanced outcomes in individuals afflicted by oral cancer.
Collapse
Affiliation(s)
- Sowmya S. V.
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Dominic Augustine
- Department of Oral Pathology and Microbiology, Faculty of Dental Sciences, MS Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| | - Shazia Mushtaq
- College of Applied Medical Sciences, Dental Health Department, King Saud University, Riyadh, Saudi Arabia
| | - Hosam Ali Baeshen
- Department of Orthodontics, Faculty of Dentistry, King Abdulziz University, Jeddah, Saudi Arabia
| | - Heba Ashi
- Department of Dental Public Health, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Reem Nabil Hassan
- Biological Sciences Department (Genome), Faculty of Sciences, King Abdul-Aziz University, Jeddah, Saudi Arabia
| | - Mohammed Alshahrani
- Endodontic Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, United States
| |
Collapse
|
3
|
Liau KM, Ooi AG, Mah CH, Yong P, Kee LS, Loo CZ, Tay MY, Foo JB, Hamzah S. The Cutting-edge of CRISPR for Cancer Treatment and its Future Prospects. Curr Pharm Biotechnol 2024; 25:1500-1522. [PMID: 37921129 DOI: 10.2174/0113892010258617231020062637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 09/01/2023] [Indexed: 11/04/2023]
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) is a versatile technology that allows precise modification of genes. One of its most promising applications is in cancer treatment. By targeting and editing specific genes involved in cancer development and progression, CRISPR has the potential to become a powerful tool in the fight against cancer. This review aims to assess the recent progress in CRISPR technology for cancer research and to examine the obstacles and potential strategies to address them. The two most commonly used CRISPR systems for gene editing are CRISPR/Cas9 and CRISPR/Cas12a. CRISPR/Cas9 employs different repairing systems, including homologous recombination (HR) and nonhomologous end joining (NHEJ), to introduce precise modifications to the target genes. However, off-target effects and low editing efficiency are some of the main challenges associated with this technology. To overcome these issues, researchers are exploring new delivery methods and developing CRISPR/Cas systems with improved specificity. Moreover, there are ethical concerns surrounding using CRISPR in gene editing, including the potential for unintended consequences and the creation of genetically modified organisms. It is important to address these issues through rigorous testing and strict regulations. Despite these challenges, the potential benefits of CRISPR in cancer therapy cannot be overlooked. By introducing precise modifications to cancer cells, CRISPR could offer a targeted and effective treatment option for patients with different types of cancer. Further investigation and development of CRISPR technology are necessary to overcome the existing challenges and harness its full potential in cancer therapy.
Collapse
Affiliation(s)
- Kah Man Liau
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - An Gie Ooi
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Chian Huey Mah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Penny Yong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ling Siik Kee
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Cheng Ze Loo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Ming Yu Tay
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| | - Sharina Hamzah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, 47500, Malaysia
- Medical Advancement for Better Quality of Life Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
4
|
El-Emam SZ, Abo El-Ella DM, Fayez SM, Asker M, Nazeam JA. Novel dandelion mannan-lipid nanoparticle: Exploring the molecular mechanism underlying the potent anticancer effect against non-small lung carcinoma. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|