1
|
Li W, Huang Y, Zhou X, Cheng B, Wang H, Wang Y. CAR-T therapy for gastrointestinal cancers: current status, challenges, and future directions. Braz J Med Biol Res 2024; 57:e13640. [PMID: 39417449 PMCID: PMC11484376 DOI: 10.1590/1414-431x2024e13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/26/2024] [Indexed: 10/19/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is a revolutionary immunotherapeutic strategy that has shown efficacy in hematological malignancies. However, its application in solid tumors, particularly gastrointestinal cancers, faces significant challenges. These include the selection of target antigens, the complexity of the tumor microenvironment, and safety and toxicity concerns. This review provides a current overview of CAR-T therapy in various gastrointestinal cancers, such as esophageal, gastric, colorectal, pancreatic, and liver cancers. It discusses the limitations and future directions of CAR-T therapy in this context. This review highlights innovative strategies, including novel target antigens, multispecific CAR-T cells, armored CAR-T cells, and the development of universal CAR-T cells. These insights aim to inform ongoing research and foster advancements in CAR-T therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Weidong Li
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Yueming Huang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Xinhao Zhou
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Bohao Cheng
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Haitao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Yao Wang
- Department of Gastrointestinal Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
2
|
Shen M, Li Z, Wang J, Xiang H, Xie Q. Traditional Chinese herbal medicine: harnessing dendritic cells for anti-tumor benefits. Front Immunol 2024; 15:1408474. [PMID: 39364399 PMCID: PMC11446781 DOI: 10.3389/fimmu.2024.1408474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 10/05/2024] Open
Abstract
Chinese Herbal Medicine (CHM) is being more and more used in cancer treatment because of its ability to regulate the immune system. Chinese Herbal Medicine has several advantages over other treatment options, including being multi-component, multi-target, and having fewer side effects. Dendritic cells (DCs) are specialized antigen presenting cells that play a vital part in connecting the innate and adaptive immune systems. They are also important in immunotherapy. Recent evidence suggests that Chinese Herbal Medicine and its components can positively impact the immune response by targeting key functions of dendritic cells. In this review, we have summarized the influences of Chinese Herbal Medicine on the immunobiological feature of dendritic cells, emphasized an anti-tumor effect of CHM-treated DCs, and also pointed out deficiencies in the regulation of DC function by Chinese Herbal Medicine and outlined future research directions.
Collapse
Affiliation(s)
- Mengyi Shen
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhen Li
- School of Preventive Medicine Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jing Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- College of Traditional Chinese Medicine, Shandong Second Medical University, Weifang, China
| | - Hongjie Xiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Qi Xie
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Lung Cancer Institute, Jinan, China
| |
Collapse
|
3
|
Deng Z, Liu J, Yu YV, Jin YN. Machine learning-based identification of an immunotherapy-related signature to enhance outcomes and immunotherapy responses in melanoma. Front Immunol 2024; 15:1451103. [PMID: 39355255 PMCID: PMC11442245 DOI: 10.3389/fimmu.2024.1451103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024] Open
Abstract
Background Immunotherapy has revolutionized skin cutaneous melanoma treatment, but response variability due to tumor heterogeneity necessitates robust biomarkers for predicting immunotherapy response. Methods We used weighted gene co-expression network analysis (WGCNA), consensus clustering, and 10 machine learning algorithms to develop the immunotherapy-related gene model (ITRGM) signature. Multi-omics analyses included bulk and single-cell RNA sequencing of melanoma patients, mouse bulk RNA sequencing, and pathology sections of melanoma patients. Results We identified 66 consensus immunotherapy prognostic genes (CITPGs) using WGCNA and differentially expressed genes (DEGs) from two melanoma cohorts. The CITPG-high group showed better prognosis and enriched immune activities. DEGs between CITPG-high and CITPG-low groups in the TCGA-SKCM cohort were analyzed in three additional melanoma cohorts using univariate Cox regression, resulting in 44 consensus genes. Using 101 machine learning algorithm combinations, we constructed the ITRGM signature based on seven model genes. The ITRGM outperformed 37 published signatures in predicting immunotherapy prognosis across the training cohort, three testing cohorts, and a meta-cohort. It effectively stratified patients into high-risk or low-risk groups for immunotherapy response. The low-risk group, with high levels of model genes, correlated with increased immune characteristics such as tumor mutation burden and immune cell infiltration, indicating immune-hot tumors with a better prognosis. The ITRGM's relationship with the tumor immune microenvironment was further validated in our experiments using pathology sections with GBP5, an important model gene, and CD8 IHC analysis. The ITRGM also predicted better immunotherapy response in eight cohorts, including urothelial carcinoma and stomach adenocarcinoma, indicating broad applicability. Conclusions The ITRGM signature is a stable and robust predictor for stratifying melanoma patients into 'immune-hot' and 'immune-cold' tumors, enhancing prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Zaidong Deng
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
| | - Jie Liu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
| | - Yanxun V. Yu
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University,
Wuhan, China
| | - Youngnam N. Jin
- Department of Neurology, Medical Research Institute, Zhongnan Hospital of Wuhan
University, Wuhan University, Wuhan, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University,
Wuhan, China
| |
Collapse
|
4
|
Gleeson FC, Dunleavy KA, Levy MJ, Carr RM, Hartgers ML, Kottschade LA, McWilliams RR, Ma WW, Kudva YC, Egan AM. Incidence and Effect Duration of Immune Checkpoint Inhibitor-Related Pancreas Adverse Events. Pancreas 2024; 53:e627-e629. [PMID: 38986081 DOI: 10.1097/mpa.0000000000002337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
|
5
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
6
|
Riveiro-Barciela M, Barreira-Díaz A, Salcedo MT, Callejo-Pérez A, Muñoz-Couselo E, Iranzo P, Ortiz-Velez C, Cedrés S, Díaz-Mejía N, Ruiz-Cobo JC, Morales R, Aguilar-Company J, Zamora E, Oliveira M, Sanz-Martínez MT, Viladomiu L, Martínez-Gallo M, Felip E, Buti M. An algorithm based on immunotherapy discontinuation and liver biopsy spares corticosteroids in two thirds of cases of severe checkpoint inhibitor-induced liver injury. Aliment Pharmacol Ther 2024; 59:865-876. [PMID: 38327102 DOI: 10.1111/apt.17898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
BACKGROUND There are few data on corticosteroids (CS)-sparing strategies for checkpoint inhibitor (ICI)-induced liver injury (ChILI). AIM We aimed to assess the performance of a 2-step algorithm for severe ChILI, based on ICI temporary discontinuation (step-1) and, if lack of biochemical improvement, CS based on the degree of necroinflammation at biopsy (step-2). METHODS Prospective study that included all subjects with grade 3/4 ChILI. Peripheral extended immunophenotyping was performed. Indication for CS: severe necroinflammation; mild or moderate necroinflammation with later biochemical worsening. RESULTS From 111 subjects with increased transaminases (January 2020 to August 2023), 44 were diagnosed with grade 3 (N = 35) or grade 4 (N = 9) ChILI. Main reason for exclusion was alternative diagnosis. Lung cancer (13) and melanoma (12) were the most common malignancies. ICI: 23(52.3%) anti-PD1, 8(18.2%) anti-PD-L1, 3(6.8%) anti-CTLA-4, 10(22.7%) combined ICI. Liver injury pattern: hepatocellular (23,52.3%) mixed (12,27.3%) and cholestatic (9,20.5%). 14(32%) presented bilirubin >1.2 mg/dL. Overall, 30(68.2%) patients did not require CS: 22(50.0%) due to ICI discontinuation (step-1) and 8/22 (36.4%) based on the degree of necroinflammation (step-2). Biopsy mainly impacted on grade 3 ChILI, sparing CS in 8 out of 15 (53.3%) non-improvement patients after ICI discontinuation. CD8+ HLA-DR expression (p = 0.028), central memory (p = 0.046) were lower in CS-free managed subjects, but effector-memory cells (p = 0.002) were higher. Time to transaminases normalisation was shorter in those CS-free managed (overall: p < 0.001, grade 3: p < 0.001). Considering our results, a strategy based on ICI discontinuation and biopsy for grade 3 ChILI is proposed. CONCLUSIONS An algorithm based on temporary immunotherapy discontinuation and biopsy allows CS avoidance in two thirds of cases of severe ChILI.
Collapse
Affiliation(s)
- Mar Riveiro-Barciela
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBERehd, Instituto Carlos III, Barcelona, Spain
| | - Ana Barreira-Díaz
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - María-Teresa Salcedo
- Human Pathology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ana Callejo-Pérez
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Eva Muñoz-Couselo
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Patricia Iranzo
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Carolina Ortiz-Velez
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Susana Cedrés
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Nely Díaz-Mejía
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan Carlos Ruiz-Cobo
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rafael Morales
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Juan Aguilar-Company
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Ester Zamora
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Mafalda Oliveira
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María-Teresa Sanz-Martínez
- Immunology Division, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Lluis Viladomiu
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Mónica Martínez-Gallo
- Immunology Division, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
- Translational Immunology Group, Vall d'Hebron Research Institute (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Catalonia, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Enriqueta Felip
- Oncology Department, Hospital Universitari Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - María Buti
- Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
- Liver Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- CIBERehd, Instituto Carlos III, Barcelona, Spain
| |
Collapse
|
7
|
Wu Y, Han W, Dong H, Liu X, Su X. The rising roles of exosomes in the tumor microenvironment reprogramming and cancer immunotherapy. MedComm (Beijing) 2024; 5:e541. [PMID: 38585234 PMCID: PMC10999178 DOI: 10.1002/mco2.541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Exosomes are indispensable for intercellular communications. Tumor microenvironment (TME) is the living environment of tumor cells, which is composed of various components, including immune cells. Based on TME, immunotherapy has been recently developed for eradicating cancer cells by reactivating antitumor effect of immune cells. The communications between tumor cells and TME are crucial for tumor development, metastasis, and drug resistance. Exosomes play an important role in mediating these communications and regulating the reprogramming of TME, which affects the sensitivity of immunotherapy. Therefore, it is imperative to investigate the role of exosomes in TME reprogramming and the impact of exosomes on immunotherapy. Here, we review the communication role of exosomes in regulating TME remodeling and the efficacy of immunotherapy, as well as summarize the underlying mechanisms. Furthermore, we also introduce the potential application of the artificially modified exosomes as the delivery systems of antitumor drugs. Further efforts in this field will provide new insights on the roles of exosomes in intercellular communications of TME and cancer progression, thus helping us to uncover effective strategies for cancer treatment.
Collapse
Affiliation(s)
- Yu Wu
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| | - Wenyan Han
- Clinical Laboratorythe Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhotChina
| | - Hairong Dong
- Clinical LaboratoryHohhot first hospitalHohhotChina
| | - Xiaofeng Liu
- Hepatopancreatobiliary Surgery Department IKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital and InstituteBeijingChina
| | - Xiulan Su
- Clinical Medical Research Center of the Affiliated HospitalInner Mongolia Medical UniversityHohhotChina
| |
Collapse
|
8
|
Wu X, Wang S, Wang C, Wu C, Zhao Z. Bioinformatics analysis identifies coagulation factor II receptor as a potential biomarker in stomach adenocarcinoma. Sci Rep 2024; 14:2468. [PMID: 38291086 PMCID: PMC10827804 DOI: 10.1038/s41598-024-52397-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024] Open
Abstract
Coagulation factor 2 thrombin receptor (F2R), a member of the G protein-coupled receptor family, plays an important role in regulating blood clotting through protein hydrolytic cleavage mediated receptor activation. However, the underlying biological mechanisms by which F2R affects the development of gastric adenocarcinoma are not fully understood. This study aimed to systematically analyze the role of F2R in gastric adenocarcinoma. Stomach adenocarcinoma (STAD)-related gene microarray data and corresponding clinicopathological information were downloaded from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Differential expression genes (DEGs) associated with F2R were analyzed using Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) networks. F2R mRNA expression data were utilized to estimate stromal cell and immune cell scores in gastric cancer tissue samples, including stromal score, immune score, and ESTIMATE score, derived from single-sample enrichment studies. Analysis of TCGA and GEO databases revealed significantly higher F2R expression in STAD tissues compared to normal tissues. Patients with high F2R expression had shorter survival times than those with low F2R expression. F2R expression was significantly correlated with tumor (T) stage, node (N) stage, histological grade and pathological stage. Enrichment analysis of F2R-related genes showed that GO terms were mainly related to circulation-mediated human immune response, immunoglobulin, cell recognition and phagocytosis. KEGG analysis indicated associations to extracellular matrix (ECM) receptor interactions, neuroactive ligand-receptor interactions, the phosphoinositide-3-kinase-protein kinase B/Akt (PI3K-AKT) signaling pathway, the Wnt signaling pathway and the transforming growth factor-beta (TGF-β) signaling pathway. GSEA revealed connections to DNA replication, the Janus kinase/signal transducers and activators of transcription (JAK-STAT) signaling pathway, the mitogen-activated protein kinase (MAPK) signaling pathway and oxidative phosphorylation. Drug sensitivity analysis demonstrated positive correlations between F2R and several drugs, including BEZ235, CGP-60474, Dasatinib, HG-6-64-1, Aazopanib, Rapamycin, Sunitinib and TGX221, while negative correlation with CP724714, FH535, GSK1904529A, JNK-9L, LY317615, pyrimidine, rTRAIL and Vinorelbine. Knocking down F2R in GC cell lines resulted in slowed proliferation, migration, and invasion. All statistical analyses were performed using R software (version 4.2.1) and GraphPad Prism 9.0. p < 0.05 was considered statistically significant. In conclusion, this study underscores the significance of F2R as a potential biomarker in gastric adenocarcinoma, shedding light on its molecular mechanisms in tumorigenesis. F2R holds promise for aiding in the diagnosis, prognosis, and targeted therapy of STAD.
Collapse
Affiliation(s)
- Xingwei Wu
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China
- Clinical Laboratory, Traditional Chinese Hospital of Lu'an, Anhui University of Chinese Medicine, Lu'an, 237000, Anhui, China
| | - Shengnan Wang
- Department of Pathology, Fuyang People's Hospital, Anhui Medical University, Fuyang, 236000, Anhui, China
| | - Chenci Wang
- Department of Oncology, Funan County People's Hospital, Fuyang, 236000, Anhui, China
| | - Chengwei Wu
- Department of Critical Care Medicine, The Second Hospital Affiliated to Jiaxing College, Jiaxing, 314000, Zhejiang, China
| | - Zhiyong Zhao
- Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui, China.
| |
Collapse
|
9
|
Wan D, Li R, Huang H, Zhu X, Li G. Pan-cancer landscape of immunology PIWI-interacting RNAs. Comput Struct Biotechnol J 2023; 21:5309-5325. [PMID: 37941657 PMCID: PMC10628341 DOI: 10.1016/j.csbj.2023.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
PIWI-interacting RNAs (piRNAs), an emergent type of non-coding RNAs during oncogenesis, play critical roles in regulating tumor microenvironment. Systematic analysis of piRNAs' roles in modulating immune pathways is important for tumor immunotherapy. In this study, in-depth analysis of piRNAs was performed to develop an integrated computational algorithm, the immunology piRNA (ImmPI) pipeline, for uncovering the global expression landscape of piRNAs and identifying their regulatory roles in immune pathways. The immunology piRNAs show a tendency towards overexpression patterns in immune cells, causing perturbations in tumors, being significantly associated with infiltration of immune cells, and having prognostic value. The ImmPI score can contribute to prioritizing tumor-related piRNAs and distinguish two subtypes of SKCM (immune-cold and hot phenotypes), as characterized by different prognoses, immunogenicity and antitumor immunity. Finally, we developed an interactive web resource (ImmPI portal: http://www.hbpding.com/ImmPi) for the biomedical research community, with several useful modules to browse, visualize, and download the results of immunology piRNAs analysis. Overall, our work provides a comprehensive landscape of piRNAs across multiple cancer types and sheds light on their regulatory and functional roles in tumor immunity. These findings pave the way for future research and development of piRNA-based immunotherapies for cancer treatment.
Collapse
Affiliation(s)
- Dongyi Wan
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ran Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Haohao Huang
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese People’s Liberation Army, Wuhan 430070, China
| | - Xiaohua Zhu
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ganxun Li
- Hepatic Surgery Center and Hubei Key Laboratory of Hepato-Biliary-Pancreatic Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Wang C, Dai S, Zhao X, Zhang Y, Gong L, Fu K, Ma C, Peng C, Li Y. Celastrol as an emerging anticancer agent: Current status, challenges and therapeutic strategies. Biomed Pharmacother 2023; 163:114882. [PMID: 37196541 DOI: 10.1016/j.biopha.2023.114882] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023] Open
Abstract
Celastrol is a pentacyclic triterpenoid extracted from the traditional Chinese medicine Tripterygium wilfordii Hook F., which has multiple pharmacological activities. In particular, modern pharmacological studies have demonstrated that celastrol exhibits significant broad-spectrum anticancer activities in the treatment of a variety of cancers, including lung cancer, liver cancer, colorectal cancer, hematological malignancies, gastric cancer, prostate cancer, renal carcinoma, breast cancer, bone tumor, brain tumor, cervical cancer, and ovarian cancer. Therefore, by searching the databases of PubMed, Web of Science, ScienceDirect and CNKI, this review comprehensively summarizes the molecular mechanisms of the anticancer effects of celastrol. According to the data, the anticancer effects of celastrol can be mediated by inhibiting tumor cell proliferation, migration and invasion, inducing cell apoptosis, suppressing autophagy, hindering angiogenesis and inhibiting tumor metastasis. More importantly, PI3K/Akt/mTOR, Bcl-2/Bax-caspase 9/3, EGFR, ROS/JNK, NF-κB, STAT3, JNK/Nrf2/HO-1, VEGF, AR/miR-101, HSF1-LKB1-AMPKα-YAP, Wnt/β-catenin and CIP2A/c-MYC signaling pathways are considered as important molecular targets for the anticancer effects of celastrol. Subsequently, studies of its toxicity and pharmacokinetic properties showed that celastrol has some adverse effects, low oral bioavailability and a narrow therapeutic window. In addition, the current challenges of celastrol and the corresponding therapeutic strategies are also discussed, thus providing a theoretical basis for the development and application of celastrol in the clinic.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shu Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xingtao Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|