1
|
Huang S, Lu Y, Fang W, Huang Y, Li Q, Xu Z. Neurodegenerative diseases and neuroinflammation-induced apoptosis. Open Life Sci 2025; 20:20221051. [PMID: 40026360 PMCID: PMC11868719 DOI: 10.1515/biol-2022-1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/30/2024] [Accepted: 12/27/2024] [Indexed: 03/05/2025] Open
Abstract
Neuroinflammation represents a critical pathway in the brain for the clearance of foreign bodies and the maintenance of homeostasis. When the neuroinflammatory process is dysregulate, such as the over-activation of microglia, which results in the excessive accumulation of free oxygen and inflammatory factors in the brain, among other factors, it can lead to an imbalance in homeostasis and the development of various diseases. Recent research has indicated that the development of numerous neurodegenerative diseases is closely associated with neuroinflammation. The pathogenesis of neuroinflammation in the brain is intricate, involving alterations in numerous genes and proteins, as well as the activation and inhibition of signaling pathways. Furthermore, excessive inflammation can result in neuronal cell apoptosis, which can further exacerbate the extent of the disease. This article presents a summary of recent studies on the relationship between neuronal apoptosis caused by excessive neuroinflammation and neurodegenerative diseases. The aim is to identify the link between the two and to provide new ideas and targets for exploring the pathogenesis, as well as the prevention and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shi Huang
- School of Clinical Medicine, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Yaxin Lu
- School of Pharmaceutical Sciences, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Wanzhen Fang
- School of Stomatology, Wannan Medical College,
241002, Wuhu, Anhui, China
| | - Yanjiao Huang
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Qiang Li
- Human Anatomy Experimental Training Center, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
| | - Zhiliang Xu
- Department of Human Anatomy, School of Basic Medical Science, Wannan Medical College, 241002, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Basic Research and Translation of Aging-Related Diseases, Wannan Medical College, Wuhu, 241002, Anhui, China
| |
Collapse
|
2
|
Hamilton M, Mars Z, Sedeuil M, Rolland M, Jean D, Boudreau F, Giroux V. ASCL2 is a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium. Biol Open 2024; 13:bio059919. [PMID: 38252116 PMCID: PMC10836648 DOI: 10.1242/bio.059919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/25/2023] [Indexed: 01/23/2024] Open
Abstract
The esophagus is protected from the hostile environment by a stratified epithelium, which renews rapidly. Homeostasis of this epithelium is ensured by a rare population of stem cells in the basal layer: Keratin 15+ (Krt15+) cells. However, little is known about the molecular mechanisms regulating their distinct features, namely self-renewal, potency and epithelial regeneration. Achaete-scute family BHLH transcription factor 2 (ASCL2) is strongly upregulated in Krt15+ stem cells and is known to contribute to stem cell maintenance in other tissues. Herein, we investigated the role of ASCL2 in maintaining homeostasis under normal and stress conditions in the esophageal epithelium. ASCL2 overexpression severely dysregulated cell differentiation and cell fate. Proliferation was also reduced due potentially to a blockage in the G1 phase of the cell cycle or an induction of quiescence. Mass spectrometry analysis confirmed alterations in several proteins associated with differentiation and the cell cycle. In addition, overexpression of ASCL2 enhanced resistance to radiation and chemotherapeutic drugs. Overall, these results denote the role of ASCL2 as a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium.
Collapse
Affiliation(s)
- Maude Hamilton
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Zoéline Mars
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
- Université Paris Cité, Magistère Européen de génétique, Paris 75006, France
| | - Molly Sedeuil
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Marjorie Rolland
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Dominique Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| |
Collapse
|
3
|
Li Z, Sun Y, Ding L, Yang J, Huang J, Cheng M, Wu L, Zhuang Z, Chen C, Huang Y, Zhu Z, Jiang S, Huang F, Wang C, Liu S, Liu L, Lei Y. Deciphering the distinct transcriptomic and gene regulatory map in adult macaque basal ganglia cells. Gigascience 2022; 12:giad095. [PMID: 38091510 PMCID: PMC10716911 DOI: 10.1093/gigascience/giad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 08/09/2023] [Accepted: 10/10/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND The basal ganglia are a complex of interconnected subcortical structures located beneath the mammalian cerebral cortex. The degeneration of dopaminergic neurons in the basal ganglia is the primary pathological feature of Parkinson's disease. Due to a lack of integrated analysis of multiomics datasets across multiple basal ganglia brain regions, very little is known about the regulatory mechanisms of this area. FINDINGS We utilized high-throughput transcriptomic and epigenomic analysis to profile over 270,000 single-nucleus cells to create a cellular atlas of the basal ganglia, characterizing the cellular composition of 4 regions of basal ganglia in adult macaque brain, including the striatum, substantia nigra (SN), globus pallidum, and amygdala. We found a distinct epigenetic regulation on gene expression of neuronal and nonneuronal cells across regions in basal ganglia. We identified a cluster of SN-specific astrocytes associated with neurodegenerative diseases and further explored the conserved and primate-specific transcriptomics in SN cell types across human, macaque, and mouse. Finally, we integrated our epigenetic landscape of basal ganglia cells with human disease heritability and identified a regulatory module consisting of candidate cis-regulatory elements that are specific to medium spiny neurons and associated with schizophrenia. CONCLUSIONS In general, our macaque basal ganglia atlas provides valuable insights into the comprehensive transcriptome and epigenome of the most important and populous cell populations in the macaque basal ganglia. We have identified 49 cell types based on transcriptomic profiles and 47 cell types based on epigenomic profiles, some of which exhibit region specificity, and characterized the molecular relationships underlying these brain regions.
Collapse
Affiliation(s)
- Zihao Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Yunong Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | | | - Jing Yang
- BGI Research, Hangzhou 310030, China
| | | | | | - Liang Wu
- BGI Research, Shenzhen 518083, China
| | | | - Cheng Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Yunqi Huang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Zhiyong Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Siyuan Jiang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
| | - Fubaoqian Huang
- BGI Research, Hangzhou 310030, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chunqing Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Shenzhen 518083, China
| | - Shiping Liu
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI Research, Hangzhou 310030, China
- BGI Research, Shenzhen 518083, China
| | - Ying Lei
- BGI Research, Shenzhen 518083, China
| |
Collapse
|
4
|
Transcription Factors as Important Regulators of Changes in Behavior through Domestication of Gray Rats: Quantitative Data from RNA Sequencing. Int J Mol Sci 2022; 23:ijms232012269. [PMID: 36293128 PMCID: PMC9603081 DOI: 10.3390/ijms232012269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Studies on hereditary fixation of the tame-behavior phenotype during animal domestication remain relevant and important because they are of both basic research and applied significance. In model animals, gray rats Rattus norvegicus bred for either an enhancement or reduction in defensive response to humans, for the first time, we used high-throughput RNA sequencing to investigate differential expression of genes in tissue samples from the tegmental region of the midbrain in 2-month-old rats showing either tame or aggressive behavior. A total of 42 differentially expressed genes (DEGs; adjusted p-value < 0.01 and fold-change > 2) were identified, with 20 upregulated and 22 downregulated genes in the tissue samples from tame rats compared with aggressive rats. Among them, three genes encoding transcription factors (TFs) were detected: Ascl3 was upregulated, whereas Fos and Fosb were downregulated in tissue samples from the brains of tame rats brain. Other DEGs were annotated as associated with extracellular matrix components, transporter proteins, the neurotransmitter system, signaling molecules, and immune system proteins. We believe that these DEGs encode proteins that constitute a multifactorial system determining the behavior for which the rats have been artificially selected. We demonstrated that several structural subtypes of E-box motifs—known as binding sites for many developmental TFs of the bHLH class, including the ASCL subfamily of TFs—are enriched in the set of promoters of the DEGs downregulated in the tissue samples of tame rats’. Because ASCL3 may act as a repressor on target genes of other developmental TFs of the bHLH class, we hypothesize that the expression of TF gene Ascl3 in tame rats indicates longer neurogenesis (as compared to aggressive rats), which is a sign of neoteny and domestication. Thus, our domestication model shows a new function of TF ASCL3: it may play the most important role in behavioral changes in animals.
Collapse
|
5
|
Zhang SF, Dai SK, Du HZ, Wang H, Li XG, Tang Y, Liu CM. The epigenetic state of EED-Gli3-Gli1 regulatory axis controls embryonic cortical neurogenesis. Stem Cell Reports 2022; 17:2064-2080. [PMID: 35931079 PMCID: PMC9481917 DOI: 10.1016/j.stemcr.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Mutations in the embryonic ectoderm development (EED) cause Weaver syndrome, but whether and how EED affects embryonic brain development remains elusive. Here, we generated a mouse model in which Eed was deleted in the forebrain to investigate the role of EED. We found that deletion of Eed decreased the number of upper-layer neurons but not deeper-layer neurons starting at E16.5. Transcriptomic and genomic occupancy analyses revealed that the epigenetic states of a group of cortical neurogenesis-related genes were altered in Eed knockout forebrains, followed by a decrease of H3K27me3 and an increase of H3K27ac marks within the promoter regions. The switching of H3K27me3 to H3K27ac modification promoted the recruitment of RNA-Pol2, thereby enhancing its expression level. The small molecule activator SAG or Ptch1 knockout for activating Hedgehog signaling can partially rescue aberrant cortical neurogenesis. Taken together, we proposed a novel EED-Gli3-Gli1 regulatory axis that is critical for embryonic brain development.
Collapse
Affiliation(s)
- Shuang-Feng Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei 230027, China; State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Shang-Kun Dai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hong-Zhen Du
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Hui Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Yi Tang
- Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Chang-Mei Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China.
| |
Collapse
|
6
|
Associations of serum vitamin D and Fok I polymorphism of receptor gene with unexplained recurrent spontaneous abortion. REV ROMANA MED LAB 2022. [DOI: 10.2478/rrlm-2022-0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: To investigate the associations of serum vitamin D and Fok I polymorphism of its receptor (VDR) with unexplained recurrent spontaneous abortion (URSA).
Methods: Ninety URSA patients and another 104 healthy pregnant women were selected as URSA and control groups, respectively. 25-Hydroxyvitamin D [25-(OH)D] level was detected by chemiluminescence. VDR gene Fok I polymorphism was analyzed by PCR, and the distribution of genotype frequency was calculated by Hardy-Weinberg equilibrium test. Association between Fok I polymorphism and susceptibility to URSA was investigated by logistic regression analysis.
Results: Gestational age, uterine height, waist circumference, 25-(OH)D level and proportions of Fok I FF and Ff genotypes were significantly lower in the URSA group (P<0.05). Compared with ff genotype, risk of URSA reduced for Ff and FF genotypes. Compared with allele f, risk of URSA was lower for allele F. 25-(OH)D level of ff genotype was significantly lower in the URSA group, which was lower than that of FF genotype (P<0.05). Compared with women with 25-(OH)D level >30 ng/mL and F allele (FF+Ff), the risk of URSA increased 2.45-, 2.43- and 5.34-fold for those with 25-(OH)D level >30 ng/mL and ff genotype, with 25-(OH)D level ≤30 ng/mL, and with ff genotype and 25-(OH)D level ≤30 ng/mL, respectively.
Conclusions: The 25-(OH)D level of the URSA group was significantly lower than that of normal pregnant women. Probably, VDR gene Fok I polymorphism is associated with URSA occurrence, and allele F decreases the risk. The risk of URSA dramatically increases in women with ff genotype and 25-(OH)D deficiency.
Collapse
|
7
|
Li Y, Wang H, Zhan L, Li Q, Li Y, Wu G, Wei H, Dong X. LncRNA FER1L4 promotes differentiation and inhibits proliferation of NSCs via miR-874-3p/Ascl2. Am J Transl Res 2022; 14:2256-2266. [PMID: 35559379 PMCID: PMC9091084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 12/30/2020] [Indexed: 06/15/2023]
Abstract
Neural stem cells (NSCs) may offer beneficeial and promising adjuncts for treatment of neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD) and spinal cord injuries. Previous studies showed that LncRNA FER1L4 plays crucial roles in many biological procedures such as invasion, metabolism, apoptosis, and stem cell differentiation. However, the role of FER1L4 in differentiation and growth of NSCs remains unknown. In the present research, we noted that FER1L4 is upregulated in NSCs induced with TNFα. Ectopic expression of FER1L4 suppresses NSCs proliferation and induces NSCs differentiated into neurons and astrocytes. Using Starbase online software, we identified that FER1L4 is one potential target gene of miR-874-3p. Ectopic expression of FER1L4 decreases miR-874-3p expression in NSCs. We identified Ascl2 is one target gene for miR-874-3p. Overexpression of FER1L4 enhances Ascl2 expression in NSCs. Furthermore, we proved that FER1L4 modulates the proliferation and differentiation of NSCs via regulating Ascl2.
Collapse
Affiliation(s)
- Yanping Li
- Department of Neurology, The Affiliated Yanan Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Hui Wang
- Department of Gastroenterology, The Affiliated Yanan Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Liping Zhan
- Department of Neurology, The Affiliated Yanan Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Qingyun Li
- Department of Neurology, The Affiliated Yanan Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Yang Li
- Department of Neurology, The Affiliated Yanan Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Gang Wu
- Department of Neurology, The Affiliated Yanan Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Huan Wei
- Department of Neurology, The Affiliated Yanan Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| | - Xiaolin Dong
- Department of Neurology, The Affiliated Yanan Hospital of Kunming Medical UniversityKunming 650051, Yunnan, China
| |
Collapse
|
8
|
Miyajima Y, Noguchi S, Tanaka Y, Li JR, Nishimura H, Kishima M, Lim J, Furuhata E, Suzuki T, Kasukawa T, Suzuki H. Prediction of transcription factors associated with DNA demethylation during human cellular development. Chromosome Res 2022; 30:109-121. [PMID: 35142952 PMCID: PMC8942926 DOI: 10.1007/s10577-022-09685-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 12/19/2022]
Abstract
DNA methylation of CpG dinucleotides is an important epigenetic modification involved in the regulation of mammalian gene expression, with each type of cell developing a specific methylation profile during its differentiation. Recently, it has been shown that a small subgroup of transcription factors (TFs) might promote DNA demethylation at their binding sites. We developed a bioinformatics pipeline to predict from genome-wide DNA methylation data TFs that promote DNA demethylation at their binding site. We applied the pipeline to International Human Epigenome Consortium methylome data and selected 393 candidate transcription factor binding motifs and associated 383 TFs that are likely associated with DNA demethylation. Validation of a subset of the candidate TFs using an in vitro assay suggested that 28 of 49 TFs from various TF families had DNA-demethylation-promoting activity; TF families, such as bHLH and ETS, contained both TFs with and without the activity. The identified TFs showed large demethylated/methylated CpG ratios and their demethylated CpGs showed significant bias toward hypermethylation in original cells. Furthermore, the identified TFs promoted demethylation of distinct sets of CpGs, with slight overlap of the targeted CpGs among TF family members, which was consistent with the results of a gene ontology (GO) term analysis of the identified TFs. Gene expression analysis of the identified TFs revealed that multiple TFs from various families are specifically expressed in human cells and tissues. Together, our results suggest that a large number of TFs from various TF families are associated with cell-type-specific DNA demethylation during human cellular development.
Collapse
Affiliation(s)
- Yurina Miyajima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Shuhei Noguchi
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuki Tanaka
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Jing-Ru Li
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Hajime Nishimura
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Mami Kishima
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Joanne Lim
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Erina Furuhata
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Takahiro Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Medical Life Science, Yokohama City University, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeya Kasukawa
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan
| | - Harukazu Suzuki
- RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
9
|
Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6338722. [PMID: 34853630 PMCID: PMC8629662 DOI: 10.1155/2021/6338722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) causes a high rate of mortality and disability, and its treatment is still limited. Loss of neurons in damaged area is hardly rescued by relative molecular therapies. Based on its disease characteristics, we transplanted human embryonic stem cell- (hESC-) derived cerebral organoids in the brain lesions of controlled cortical impact- (CCI-) modeled severe combined immunodeficient (SCID) mice. Grafted organoids survived and differentiated in CCI-induced lesion pools in mouse cortical tissue. Implanted cerebral organoids differentiated into various types of neuronal cells, extended long projections, and showed spontaneous action, as indicated by electromyographic activity in the grafts. Induced vascularization and reduced glial scar were also found after organoid implantation, suggesting grafting could improve local situation and promote neural repair. More importantly, the CCI mice's spatial learning and memory improved after organoid grafting. These findings suggest that cerebral organoid implanted in lesion sites differentiates into cortical neurons, forms long projections, and reverses deficits in spatial learning and memory, a potential therapeutic avenue for TBI.
Collapse
|
10
|
Patil N, Walsh P, Carrabre K, Holmberg EG, Lavoie N, Dutton JR, Parr AM. Regionally Specific Human Pre-Oligodendrocyte Progenitor Cells Produce Both Oligodendrocytes and Neurons after Transplantation in a Chronically Injured Spinal Cord Rat Model after Glial Scar Ablation. J Neurotrauma 2021; 38:777-788. [PMID: 33107383 DOI: 10.1089/neu.2020.7009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chronic spinal cord injury (SCI) is a devastating medical condition. In the acute phase after injury, there is cell loss resulting in chronic axonal damage and loss of sensory and motor function including loss of oligodendrocytes that results in demyelination of axons and further dysfunction. In the chronic phase, the inhibitory environment within the lesion including the glial scar can arrest axonal growth and regeneration and can also potentially affect transplanted cells. We hypothesized that glial scar ablation (GSA) along with cell transplantation may be required as a combinatorial therapy to achieve functional recovery, and therefore we proposed to examine the survival and fate of human induced pluripotent stem cell (iPSC) derived pre-oligodendrocyte progenitor cells (pre-OPCs) transplanted in a model of chronic SCI, whether this was affected by GSA, and whether this combination of treatments would result in functional recovery. In this study, chronically injured athymic nude (ATN) rats were allocated to one of three treatment groups: GSA only, pre-OPCs only, or GSA+pre-OPCs. We found that human iPSC derived pre-OPCs were multi-potent and retained the ability to differentiate into mainly oligodendrocytes or neurons when transplanted into the chronically injured spinal cords of rats. Twelve weeks after cell transplantation, we observed that more of the transplanted cells differentiated into oligodendrocytes when the glial scar was ablated compared with no GSA. Further, we also observed that a higher percentage of transplanted cells differentiated into V2a interneurons and motor neurons in the pre-OPCs only group when compared with GSA+pre-OPCs. This suggests that the local environment created by ablation of the glial scar may have a significant effect on the fate of cells transplanted into the injury site.
Collapse
Affiliation(s)
- Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Patrick Walsh
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kailey Carrabre
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Eric G Holmberg
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicolas Lavoie
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - James R Dutton
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ann M Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
11
|
Huang J, Qin X, Cai X, Huang Y. Effectiveness of Acupuncture in the Treatment of Parkinson's Disease: An Overview of Systematic Reviews. Front Neurol 2020; 11:917. [PMID: 32973668 PMCID: PMC7482669 DOI: 10.3389/fneur.2020.00917] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/16/2020] [Indexed: 01/08/2023] Open
Abstract
Background: The effects of acupuncture on Parkinson's disease (PD) outcomes remain unclear. The aim of this overview was to comprehensively evaluate the methodological quality and applicability of the results of systematic reviews (SRs)/meta-analyses (MAs) that examined the use of acupuncture to treat PD. Methods: Eight databases were searched to retrieve SRs/MAs on the use of acupuncture for the treatment of PD. Two reviewers independently screened and extracted the data using the Assessing the Methodological Quality of Systematic Reviews 2 (AMSTAR-2) checklist to evaluate the methodological quality and using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) criteria to assess the evidence quality of the included reviews. Results: A total of 11 SRs/MAs were included. According to the AMSTAR-2 checklist results, all included SRs/MAs were rated as very-low-quality studies. The GRADE criteria revealed 20 studies with very-low-quality evidence, 9 with low-quality evidence, 3 with moderate-quality evidence, and 0 with high-quality evidence. Descriptive analysis showed that acupuncture appears to be a clinically effective and safe treatment for PD. Conclusions: The use of acupuncture for the treatment of PD may be clinically effective and safe. This conclusion must be interpreted cautiously due to the generally low methodological quality and low quality of evidence of the included studies.
Collapse
Affiliation(s)
- Jinke Huang
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaohui Qin
- Department of Neurology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine; Guangdong Provincial Academy of Chinese Medical Sciences), Guangzhou, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
12
|
Haque A, Samantaray S, Knaryan VH, Capone M, Hossain A, Matzelle D, Chandran R, Shields DC, Farrand AQ, Boger HA, Banik NL. Calpain mediated expansion of CD4+ cytotoxic T cells in rodent models of Parkinson's disease. Exp Neurol 2020; 330:113315. [PMID: 32302678 PMCID: PMC7282933 DOI: 10.1016/j.expneurol.2020.113315] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/17/2020] [Accepted: 04/13/2020] [Indexed: 01/11/2023]
Abstract
Parkinson's disease (PD), a debilitating progressive degenerative movement disorder associated with loss of dopaminergic (DA) neurons in the substantia nigra (SN), afflicts approximately one million people in the U.S., including a significant number of Veterans. Disease characteristics include tremor, rigidity, postural instability, bradykinesia, and at a cellular level, glial cell activation and Lewy body inclusions in DA neurons. The most potent medical/surgical treatments do not ultimately prevent disease progression. Therefore, new therapies must be developed to halt progression of the disease. While the mechanisms of the degenerative process in PD remain elusive, chronic inflammation, a common factor in many neurodegenerative diseases, has been implicated with associated accumulation of toxic aggregated α-synuclein in neurons. Calpain, a calcium-activated cysteine neutral protease, plays a pivotal role in SN and spinal cord degeneration in PD via its role in α-synuclein aggregation, activation/migration of microglia and T cells, and upregulation of inflammatory processes. Here we report an increased expression of a subset of CD4+ T cells in rodent models of PD, including MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) mice and DSP-4 [N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine hydrochloride]/6-hydroxydopamine rats, which produced higher levels of perforin and granzyme B - typically found in cytotoxic T cells. Importantly, the CD4+ cytotoxic subtype was attenuated following calpain inhibition in MPTP mice, suggesting that calpain and this distinct CD4+ T cell subset may have critical roles in the inflammatory process, disease progression, and neurodegeneration in PD.
Collapse
Affiliation(s)
- Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Supriti Samantaray
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Varduhi H Knaryan
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Mollie Capone
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Azim Hossain
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Denise Matzelle
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC 29401, USA
| | - Raghavendar Chandran
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Donald C Shields
- Department of Neurosurgery, The George Washington University, Washington, DC, USA
| | - Ariana Q Farrand
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Heather A Boger
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Naren L Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA; Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St, Charleston, SC 29401, USA.
| |
Collapse
|
13
|
Fang Y, Gao S, Wang X, Cao Y, Lu J, Chen S, Lenahan C, Zhang JH, Shao A, Zhang J. Programmed Cell Deaths and Potential Crosstalk With Blood-Brain Barrier Dysfunction After Hemorrhagic Stroke. Front Cell Neurosci 2020; 14:68. [PMID: 32317935 PMCID: PMC7146617 DOI: 10.3389/fncel.2020.00068] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/06/2020] [Indexed: 12/13/2022] Open
Abstract
Hemorrhagic stroke is a life-threatening neurological disease characterized by high mortality and morbidity. Various pathophysiological responses are initiated after blood enters the interstitial space of the brain, compressing the brain tissue and thus causing cell death. Recently, three new programmed cell deaths (PCDs), necroptosis, pyroptosis, and ferroptosis, were also found to be important contributors in the pathophysiology of hemorrhagic stroke. Additionally, blood-brain barrier (BBB) dysfunction plays a crucial role in the pathophysiology of hemorrhagic stroke. The primary insult following BBB dysfunction may disrupt the tight junctions (TJs), transporters, transcytosis, and leukocyte adhesion molecule expression, which may lead to brain edema, ionic homeostasis disruption, altered signaling, and immune infiltration, consequently causing neuronal cell death. This review article summarizes recent advances in our knowledge of the mechanisms regarding these new PCDs and reviews their contributions in hemorrhagic stroke and potential crosstalk in BBB dysfunction. Numerous studies revealed that necroptosis, pyroptosis, and ferroptosis participate in cell death after subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH). Endothelial dysfunction caused by these three PCDs may be the critical factor during BBB damage. Also, several signaling pathways were involved in PCDs and BBB dysfunction. These new PCDs (necroptosis, pyroptosis, ferroptosis), as well as BBB dysfunction, each play a critical role after hemorrhagic stroke. A better understanding of the interrelationship among them might provide us with better therapeutic targets for the treatment of hemorrhagic stroke.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiqi Gao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yang Cao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianan Lu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Cameron Lenahan
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Burrell College of Osteopathic Medicine, Las Cruces, NM, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Center for Neuroscience Research, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Anesthesiology, Loma Linda University School of Medicine, Loma Linda, CA, United States.,Department of Neurosurgery, Loma Linda University School of Medicine, Loma Linda, CA, United States
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Brain Research Institute, Zhejiang University, Hangzhou, China.,Collaborative Innovation Center for Brain Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Cui J, Guo X, Li Q, Song N, Xie J. Hepcidin-to-Ferritin Ratio Is Decreased in Astrocytes With Extracellular Alpha-Synuclein and Iron Exposure. Front Cell Neurosci 2020; 14:47. [PMID: 32210768 PMCID: PMC7075942 DOI: 10.3389/fncel.2020.00047] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system (CNS). As indispensable elements of the neurovascular unit, they are involved in the inflammatory response and disease-associated processes. Alpha-synuclein (α-syn) is released into the extracellular space by neurons and can be internalized by adjacent astrocytes, which activates glial cells to induce neuroinflammation. We were interested in whether astrocyte-mediated neuroinflammation is modulated by intracellular iron status and extracellular α-syn. Our results showed that recombinant α-syn (1 μg/ml and 5 μg/ml) treatment for 24 h did not affect the expression of the iron transporters divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1), nor those of iron regulatory protein (IRP) 1 or IRP2. Several proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6 exhibited up-regulated mRNA levels in 5 μg/ml α-syn-treated astrocytes. TNF-α release was increased, indicating that inflammatory responses were triggered in these cells. Pretreatment with the iron-overload reagent ferric ammonium citrate (FAC, 100 μmol/L) for 24 h had no effects on mRNA levels and release of proinflammatory cytokines. Inflammatory responses triggered by α-syn were not affected by iron overload. The iron chelator desferrioxamine (DFO, 100 μmol/L) exerted suppressive effects on TNF-α mRNA levels, although no change was observed for TNF-α release. Hepcidin mRNA levels were down-regulated significantly in astrocytes co-treated with FAC and α-syn, although independent treatment with either FAC or α-syn did not alter hepcidin levels. In contrast, hepcidin mRNA levels were up-regulated in DFO and α-syn co-treated cells. As expected, ferritin protein levels were up-regulated or down-regulated with FAC or DFO treatment, respectively. Following the up-regulation of ferritin mediated by α-syn, hepcidin-to-ferritin levels were indicative of modulatory effects in α-syn-treated astrocytes with altered iron status. Therefore, we propose that the hepcidin-to-ferritin ratio is indicative of a detrimental response in primary cultured astrocytes experiencing iron and extracellular α-syn.
Collapse
Affiliation(s)
- Juntao Cui
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Xinli Guo
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Qijun Li
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Ning Song
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| | - Junxia Xie
- Institute of Brain Science and Disease, Shandong Provincial Key Laboratory of Pathogenesis and Prevention of Neurological Disorders, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Qingdao University, Qingdao, China
| |
Collapse
|
15
|
Yang W, Chang Z, Que R, Weng G, Deng B, Wang T, Huang Z, Xie F, Wei X, Yang Q, Li M, Ma K, Zhou F, Tang B, Mok VCT, Zhu S, Wang Q. Contra-Directional Expression of Plasma Superoxide Dismutase with Lipoprotein Cholesterol and High-Sensitivity C-reactive Protein as Important Markers of Parkinson's Disease Severity. Front Aging Neurosci 2020; 12:53. [PMID: 32210787 PMCID: PMC7068795 DOI: 10.3389/fnagi.2020.00053] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
Aim: Oxidative stress and inflammation play critical roles in the neuropathogenesis of PD. We aimed to evaluate oxidative stress and inflammation status by measuring serum superoxide dismutase (SOD) with lipoprotein cholesterol and high-sensitivity C-reactive protein (hsCRP) respectively in PD patients, and explore their correlation with the disease severity. Methods: We performed a cross-sectional study that included 204 PD patients and 204 age-matched healthy controls (HCs). Plasma levels of SOD, hsCRP, total cholesterol, high-density lipoprotein cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C) were measured. A series of neuropsychological assessments were performed to rate the severity of PD. Results: The plasma levels of SOD (135.7 ± 20.14 vs. 147.2 ± 24.34, P < 0.0001), total cholesterol, HDL-C and LDL-C in PD were significantly lower than those in HCs; the hsCRP level was remarkably increased in PD compared to HC (2.766 ± 3.242 vs. 1.637 ± 1.597, P < 0.0001). The plasma SOD was negatively correlated with the hsCRP, while positively correlated with total cholesterol, HDL-C, and LDL-C in PD patients. The plasma SOD were negatively correlated with H&Y, total UPDRS, UPDRS (I), UPDRS (II), and UPDRS (III) scores, but positively correlated with MoCA and MMSE scores. Besides, hsCRP was negatively correlated with MoCA; while total cholesterol, HDL-C and LDL-C were positively correlated with the MoCA, respectively. Conclusion: Our findings suggest that lower SOD along with cholesterol, HDL-C and LDL-C, and higher hsCRP levels might be important markers to assess the PD severity. A better understanding of SOD and hsCRP may yield insights into the pathogenesis of PD.
Collapse
Affiliation(s)
- Wanlin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zihan Chang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Rongfang Que
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Guomei Weng
- Department of Neurology, The First People Hospital of Zhaoqing, Zhaoqing, China
| | - Bin Deng
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ting Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Zifeng Huang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Fen Xie
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xiaobo Wei
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qin Yang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Mengyan Li
- Department of Neurology, Guangzhou First People's Hospital, Guangzhou, China
| | - Kefu Ma
- Department of Neurology, Shenzhen People Hospital, Shenzhen, China
| | - Fengli Zhou
- Department of Respiratory Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital of Central South University, Changsha, China
| | - Vincent C T Mok
- Gerald Choa Neuroscience Centre, Department of Medicine and Therapeutics, Faculty of Medicine, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, China
| | - Shuzhen Zhu
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qing Wang
- Department of Neurology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|