1
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
2
|
Fazekas LA, Szabo B, Szegeczki V, Filler C, Varga A, Godo ZA, Toth G, Reglodi D, Juhasz T, Nemeth N. Impact Assessment of Pituitary Adenylate Cyclase Activating Polypeptide (PACAP) and Hemostatic Sponge on Vascular Anastomosis Regeneration in Rats. Int J Mol Sci 2023; 24:16695. [PMID: 38069018 PMCID: PMC10706260 DOI: 10.3390/ijms242316695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The proper regeneration of vessel anastomoses in microvascular surgery is crucial for surgical safety. Pituitary adenylate cyclase-activating polypeptide (PACAP) can aid healing by decreasing inflammation, apoptosis and oxidative stress. In addition to hematological and hemorheological tests, we examined the biomechanical and histological features of vascular anastomoses with or without PACAP addition and/or using a hemostatic sponge (HS). End-to-end anastomoses were established on the right femoral arteries of rats. On the 21st postoperative day, femoral arteries were surgically removed for evaluation of tensile strength and for histological and molecular biological examination. Effects of PACAP were also investigated in tissue culture in vitro to avoid the effects of PACAP degrading enzymes. Surgical trauma and PACAP absorption altered laboratory parameters; most notably, the erythrocyte deformability decreased. Arterial wall thickness showed a reduction in the presence of HS, which was compensated by PACAP in both the tunica media and adventitia in vivo. The administration of PACAP elevated these parameters in vitro. In conclusion, the application of the neuropeptide augmented elastin expression while HS reduced it, but no significant alterations were detected in collagen type I expression. Elasticity and tensile strength increased in the PACAP group, while it decreased in the HS decreased. Their combined use was beneficial for vascular regeneration.
Collapse
Affiliation(s)
- Laszlo Adam Fazekas
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Balazs Szabo
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Vince Szegeczki
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Csaba Filler
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Adam Varga
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| | - Zoltan Attila Godo
- Department of Information Technology, Faculty of Informatics, University of Debrecen, Kassai ut 26, H-4028 Debrecen, Hungary;
| | - Gabor Toth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Dom ter 8, H-6720 Szeged, Hungary;
| | - Dora Reglodi
- HUN-REN-PTE PACAP Research Group, Department of Anatomy, Medical School, University of Pecs, Szigeti ut 12, H-7624 Pecs, Hungary;
| | - Tamas Juhasz
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary; (V.S.); (C.F.); (T.J.)
| | - Norbert Nemeth
- Department of Operative Techniques and Surgical Research, Faculty of Medicine, University of Debrecen, Moricz Zsigmond ut 22, H-4032 Debrecen, Hungary; (L.A.F.); (B.S.); (A.V.)
| |
Collapse
|
3
|
Shen X, Gong C, Liu M, Jiang Y, Xu Y, Ge Z, Tao Z, Dong N, Liao J, Yu L, Fang Q. Effect of sacubitril/valsartan on brain natriuretic peptide level and prognosis of acute cerebral infarction. PLoS One 2023; 18:e0291754. [PMID: 37733793 PMCID: PMC10513241 DOI: 10.1371/journal.pone.0291754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/04/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND AND PURPOSE Previous studies demonstrated that elevated brain natriuretic peptide (BNP) level is associated with adverse clinical outcomes of acute cerebral infarction (ACI). Researchers hypothesized that BNP might be a potential neuroprotective factor against cerebral ischemia because of the antagonistic effect of the natriuretic peptide system on the renin-angiotensin system and regulation of cardiovascular homeostasis. However, whether decreasing the BNP level can improve the prognosis of ACI has not been studied yet. The main effect of sacubitril/valsartan is to enhance the natriuretic peptide system. We investigated whether the intervention of plasma BNP levels with sacubitril/valsartan could improve the prognosis of patients with ACI. METHODS In a randomized, controlled, parallel-group trial of patients with ACI within 48 hours of symptom onset and need for antihypertensive therapy, patients have randomized within 24 hours to sacubitril/valsartan 200mg once daily (the intervention group) or to conventional medical medication (the control group). The primary outcome was a change in plasma BNP levels before and after sacubitril/valsartan administration. The secondary outcomes included plasma levels of brain-derived neurotrophic factor (BDNF), Corin and neprilysin (NEP) before and after medication, the modified Rankin scale, and the National Institutes of Health Stroke Scale (at onset, at discharge, 30 days, and 90 days after discharge). RESULTS We evaluated 80 eligible patients admitted to the Stroke Center of Lianyungang Second People's Hospital between 1st May, 2021 and 31st June, 2022. Except for 28 patients excluded before randomization and 14 patients who did not meet the criteria or dropped out or lost to follow-up during the trial, the remaining 38 patients (intervention group: 17, control group: 21) had well-balanced baseline features. In this trial, we found that plasma BNP levels (P = 0.003) decreased and NEP levels (P = 0.006) increased in enrolled patients after treatment with sacubitril/valsartan. There were no differences in plasma BDNF and Corin levels between the two groups. Furthermore, no difference in functional prognosis was observed between the two groups (all P values>0.05). CONCLUSIONS Sacubitril/valsartan reduced endogenous plasma BNP levels in patients with ACI and did not affect their short-term prognosis.
Collapse
Affiliation(s)
- Xiaozhu Shen
- Department of Geriatrics, Lianyungang Hospital, Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Chen Gong
- Department of Geriatrics, Lianyungang Hospital, Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Mengqian Liu
- Department of Geriatrics, Lianyungang Hospital, Affiliated to Jiangsu University (Lianyungang Second People’s Hospital), Lianyungang, China
| | - Yi Jiang
- Bengbu Medical College, Bengbu, China
| | - Yiwen Xu
- Department of Infectious Diseases, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Zhonglin Ge
- Department of Neurology, Lianyungang Second People’s Hospital, Lianyungang, China
| | - Zhonghai Tao
- Department of Neurology, Lianyungang Second People’s Hospital, Lianyungang, China
| | - Nan Dong
- Department of Neurology, Suzhou Industrial Park Xinghai Hospital, Suzhou, China
| | - Juan Liao
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liqiang Yu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qi Fang
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Toth D, Reglodi D, Schwieters L, Tamas A. Role of endocrine PACAP in age-related diseases. Front Endocrinol (Lausanne) 2023; 14:1118927. [PMID: 36967746 PMCID: PMC10033946 DOI: 10.3389/fendo.2023.1118927] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Pituitary adenylate cyclase activating polypeptide (PACAP) is a conserved neuropeptide, which confers diverse anti-aging endocrine and paracrine/autocrine effects, including anti-apoptotic, anti-inflammatory and antioxidant action. The results of the in vivo and in vitro experiments show that increasing emphasis is being placed on the diagnostic/prognostic biomarker potential of this neuropeptide in a wide array of age-related diseases. After the initial findings regarding the presence and alteration of PACAP in different body fluids in physiological processes, an increasing number of studies have focused on the changes of its levels in various pathological conditions associated with advanced aging. Until 2016 - when the results of previous human studies were reviewed - a vast majority of the studies had dealt with age-related neurological diseases, like cerebrovascular and neurodegenerative diseases, multiple sclerosis, as well as some other common diseases in elderly such as migraine, traumatic brain injury and post-traumatic stress disorder, chronic hepatitis and nephrotic syndrome. The aim of this review is to summarize the old and the new results and highlight those 'classical' and emerging clinical fields in which PACAP may become subject to further investigation as a diagnostic and/or prognostic biomarker in age-related diseases.
Collapse
Affiliation(s)
- Denes Toth
- Department of Forensic Medicine, University of Pécs Medical School, Pécs, Hungary
| | - Dora Reglodi
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
| | - Lili Schwieters
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
| | - Andrea Tamas
- Department of Anatomy, ELKH-PTE PACAP Research Team, Centre for Neuroscience, University of Pécs Medical School, Pécs, Hungary
- *Correspondence: Andrea Tamas,
| |
Collapse
|
5
|
Guo S, Jansen-Olesen I, Olesen J, Christensen SL. Role of PACAP in migraine: An alternative to CGRP? Neurobiol Dis 2023; 176:105946. [PMID: 36481434 DOI: 10.1016/j.nbd.2022.105946] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/29/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Migraine is a widespread and debilitating neurological condition affecting more than a billion people worldwide. Thus, more effective migraine therapies are highly needed. In the last decade, two endogenous neuropeptides, calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating peptide (PACAP), were identified to be implicated in migraine. Recently, introduction of monoclonal antibodies (mAbs) blocking the CGRP is the most important advance in migraine therapy for decades. However, 40% of patients are unresponsive to these new drugs. We believe that PACAP may be involved in these patients. Like CGRP, PACAP is located to sensory nerve fibers, it dilates cranial arteries, it causes migraine when infused into patients and it is a peptide that lends itself to antibody therapy. Also, recent studies suggest that the PACAP pathway is independent of the CGRP pathway. Understanding the signaling pathways of PACAP may therefore lead to identification of novel therapeutic targets of particular interest in patients unresponsive to anti-CGRP therapy. Accordingly, neutralizing mAb to PACAP is currently in clinical phase II development. The aim of the present review is, therefore, to give a thorough account of the existing data on PACAP, its receptors and its relation to migraine.
Collapse
Affiliation(s)
- Song Guo
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Inger Jansen-Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Jes Olesen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Sarah Louise Christensen
- Department of Neurology, Danish Headache Center, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
6
|
Figueiredo CA, Düsedau HP, Steffen J, Ehrentraut S, Dunay MP, Toth G, Reglödi D, Heimesaat MM, Dunay IR. The neuropeptide PACAP alleviates T. gondii infection-induced neuroinflammation and neuronal impairment. J Neuroinflammation 2022; 19:274. [PMCID: PMC9675261 DOI: 10.1186/s12974-022-02639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 10/23/2022] [Indexed: 11/21/2022] Open
Abstract
Background Cerebral infection with the protozoan Toxoplasma gondii (T. gondii) is responsible for inflammation of the central nervous system (CNS) contributing to subtle neuronal alterations. Albeit essential for brain parasite control, continuous microglia activation and recruitment of peripheral immune cells entail distinct neuronal impairment upon infection-induced neuroinflammation. PACAP is an endogenous neuropeptide known to inhibit inflammation and promote neuronal survival. Since PACAP is actively transported into the CNS, we aimed to assess the impact of PACAP on the T. gondii-induced neuroinflammation and subsequent effects on neuronal homeostasis. Methods Exogenous PACAP was administered intraperitoneally in the chronic stage of T. gondii infection, and brains were isolated for histopathological analysis and determination of pathogen levels. Immune cells from the brain, blood, and spleen were analyzed by flow cytometry, and the further production of inflammatory mediators was investigated by intracellular protein staining as well as expression levels by RT-qPCR. Neuronal and synaptic alterations were assessed on the transcriptional and protein level, focusing on neurotrophins, neurotrophin-receptors and signature synaptic markers. Results Here, we reveal that PACAP administration reduced the inflammatory foci and the number of apoptotic cells in the brain parenchyma and restrained the activation of microglia and recruitment of monocytes. The neuropeptide reduced the expression of inflammatory mediators such as IFN-γ, IL-6, iNOS, and IL-1β. Moreover, PACAP diminished IFN-γ production by recruited CD4+ T cells in the CNS. Importantly, PACAP promoted neuronal health via increased expression of the neurotrophin BDNF and reduction of p75NTR, a receptor related to neuronal cell death. In addition, PACAP administration was associated with increased expression of transporters involved in glutamatergic and GABAergic signaling that are particularly affected during cerebral toxoplasmosis. Conclusions Together, our findings unravel the beneficial effects of exogenous PACAP treatment upon infection-induced neuroinflammation, highlighting the potential implication of neuropeptides to promote neuronal survival and minimize synaptic prejudice. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02639-z.
Collapse
Affiliation(s)
- Caio Andreeta Figueiredo
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Henning Peter Düsedau
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Johannes Steffen
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Stefanie Ehrentraut
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany
| | - Miklos P. Dunay
- grid.483037.b0000 0001 2226 5083Department and Clinic of Surgery and Ophthalmology, University of Veterinary Medicine, Budapest, Hungary
| | - Gabor Toth
- grid.9008.10000 0001 1016 9625Department of Medical Chemistry, University of Szeged, Budapest, Hungary
| | - Dora Reglödi
- grid.9679.10000 0001 0663 9479Department of Anatomy, MTA-PTE PACAP Research Team and Szentagothai Research Center, University of Pecs Medical School, Pecs, Hungary
| | - Markus M. Heimesaat
- grid.6363.00000 0001 2218 4662Institute of Microbiology, Infectious Diseases and Immunology, Charité - University Medicine Berlin, Berlin, Germany
| | - Ildiko Rita Dunay
- grid.5807.a0000 0001 1018 4307Institute of Inflammation and Neurodegeneration, Health Campus Immunology, Infectiology and Inflammation (GC-I3), Otto-Von-Guericke University, Magdeburg, Germany ,grid.418723.b0000 0001 2109 6265Center for Behavioral Brain Sciences – CBBS, Magdeburg, Germany
| |
Collapse
|
7
|
Riser M, Norrholm SD. Pituitary Adenylate Cyclase Activating Peptide and Post-traumatic Stress Disorder: From Bench to Bedside. Front Psychiatry 2022; 13:861606. [PMID: 35865299 PMCID: PMC9295898 DOI: 10.3389/fpsyt.2022.861606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with isoforms consisting of either 27 or 38 amino acids. PACAP is encoded by the adenylate cyclase activating peptide gene, ADCYAP1, in humans and the highly conserved corresponding rodent gene, Adcyap1. PACAP is known to regulate cellular stress responses in mammals. PACAP is robustly expressed in both central nervous system (CNS) and peripheral tissues. The activity of PACAP and its selective receptor, PAC1-R, has been characterized within the hypothalamic-pituitary-adrenal (HPA) axis and autonomic division of the peripheral nervous system, two critical neurobiological systems mediating responses to stressors and threats. Findings from previous translational, empirical studies imply PACAP regulation in autonomic functions and high expressions of PACAP and PAC1 receptor in hypothalamic and limbic structures, underlying its critical role in learning and memory, as well as emotion and fear processing. The current review summarizes recent findings supporting a role of PACAP/PAC1-R regulation in key brain areas that mediate adaptive behavioral and neurobiological responses to environmental stressors and maladaptive reactions to stress including the development of fear and anxiety disorders.
Collapse
Affiliation(s)
| | - Seth Davin Norrholm
- Department of Psychiatry and Behavioral Neurosciences, Neuroscience Center for Anxiety, Stress, and Trauma, Wayne State University School of Medicine, Detroit, MI, United States
| |
Collapse
|
8
|
Michael E, Covic L, Kuliopulos A. Lipopeptide Pepducins as Therapeutic Agents. Methods Mol Biol 2021; 2383:307-333. [PMID: 34766299 DOI: 10.1007/978-1-0716-1752-6_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Pepducins are lipidated peptides that target the intracellular loops of G protein-coupled receptors (GPCRs) in order to modulate transmembrane signaling to internally located effectors. With a wide array of potential activities ranging from partial, biased, or full agonism to antagonism, pepducins represent a versatile class of compounds that can be used to potentially treat diverse human diseases or be employed as novel tools to probe complex mechanisms of receptor activation and signaling in cells and in animals. Here, we describe a number of different pepducins including an advanced compound, PZ-128, that has successfully progressed through phase 2 clinical trials in cardiac patients demonstrating safety and efficacy in suppressing myonecrosis and arterial thrombosis.
Collapse
Affiliation(s)
- Emily Michael
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Lidija Covic
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Athan Kuliopulos
- Center of Hemostasis and Thrombosis Research, Division of Hematology-Oncology, Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
9
|
Wiciński M, Ozorowski M, Wódkiewicz E, Otto SW, Kubiak K, Malinowski B. Impact of Vitamin D Supplementation on Inflammatory Markers' Levels in Obese Patients. Curr Issues Mol Biol 2021; 43:1606-1622. [PMID: 34698104 PMCID: PMC8929128 DOI: 10.3390/cimb43030114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
In view of research suggesting a possible beneficial impact of vitamin D on systemic inflammatory response, the authors decided to investigate an influence of vitamin D supplementation on serum levels of certain inflammatory markers in obese patients. The current study included such biomarkers as interleukin-6 (IL-6), pituitary adenylate cyclase-activating peptide (PACAP), advanced oxidation protein products (AOPP), C-X3-C Motif Chemokine Ligand 1 (CX3CL1), monocyte chemoattractant protein-1 (MCP-1), and nitric oxide (NO). The measurements were performed with the ELISA method before and after 3-month-long supplementation of 2000 IU of vitamin D orally. The results showed that the therapy did not induce any statistically significant changes in serum levels of MCP-1, IL-6, CX3CL1, and PACAP. The supplementation was related to a significant increase in measurements of NO and AOPP levels, although the correlation analysis between vitamin D concentration after its supplementation and the concentration of the molecular parameters did not show significant relation. In conclusion, our study seems to contradict certain aspects of findings available in the literature regarding the vitamin D's impact.
Collapse
Affiliation(s)
- Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Mateusz Ozorowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | - Eryk Wódkiewicz
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| | | | - Karol Kubiak
- Department of Obstetrics and Gynecology, St. Franziskus-Hospital, 48145 Münster, Germany;
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (M.W.); (M.O.); (B.M.)
| |
Collapse
|
10
|
Fang Y, Shi H, Huang L, Ren R, Lenahan C, Xiao J, Liu Y, Liu R, Sanghavi R, Li C, Chen S, Tang J, Yu J, Zhang JH, Zhang J. Pituitary adenylate cyclase-activating polypeptide attenuates mitochondria-mediated oxidative stress and neuronal apoptosis after subarachnoid hemorrhage in rats. Free Radic Biol Med 2021; 174:236-248. [PMID: 34400297 PMCID: PMC8985554 DOI: 10.1016/j.freeradbiomed.2021.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 07/30/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022]
Abstract
Mitochondria-mediated oxidative stress and neuronal apoptosis play an important role in early brain injury following subarachnoid hemorrhage (SAH). Pituitary adenylate cyclase-activating polypeptide (PACAP) has been shown to reduce oxidative stress and cellular apoptosis by maintaining mitochondrial function under stress. The objective of this study is to investigate the effects of PACAP on mitochondria dysfunction - induced oxidative stress and neuronal apoptosis in both vivo and vitro models of SAH. PACAP Knockout CRISPR and exogenous PACAP38 were used to verify the neuroprotective effects of PACAP in rats after endovascular perforation - induced SAH as well as in primary neuron culture after hemoglobin stimulation. The results showed that endogenous PACAP knockout aggravated mitochondria dysfunction - mediated ATP reduction, reactive oxygen species accumulation and neuronal apoptosis in ipsilateral hemisphere at 24 h after SAH in rats. The exogenous PACAP38 treatment provided both short- and long-term neurological benefits by attenuating mitochondria - mediated oxidative stress and neuronal apoptosis after SAH in rats. Consistently, the exogenous PACAP38 treatment presented similar neuroprotection in the primary neuron culture after hemoglobin stimulation. Pharmacological inhibition of adenylyl cyclase (AC) or extracellular signal-regulated kinase (ERK) partly abolished the anti-oxidative stress and anti-apoptotic effects provided by PACAP38 treatment after the experimental SAH both in vivo and in vitro, suggesting the involvement of the AC-cyclic adenosine monophosphate (cAMP)-protein kinase A (PKA) and ERK pathway. Collectively, PACAP38 may serve as a promising treatment strategy for alleviating early brain injury after SAH.
Collapse
Affiliation(s)
- Yuanjian Fang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hui Shi
- Department of Neurosurgery, Yongchuan Hospital, Chongqing Medical University, Chongqing, China
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Reng Ren
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Cameron Lenahan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Jie Xiao
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Yu Liu
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Rui Liu
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Rajvee Sanghavi
- Burrell College of Osteopathic Medicine, Las Cruces, NM, USA
| | - Chenguang Li
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA
| | - Jun Yu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - John H Zhang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA; Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Palus K, Bulc M, Całka J, Zielonka Ł, Nowicki M. Diabetes Affects the Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP)-Like Immunoreactive Enteric Neurons in the Porcine Digestive Tract. Int J Mol Sci 2021; 22:ijms22115727. [PMID: 34072110 PMCID: PMC8198975 DOI: 10.3390/ijms22115727] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Diabetic gastroenteropathy is a common complication, which develops in patients with long-term diabetes. The pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide known for its cytoprotective properties and plays an important role in neuronal development, neuromodulation and neuroprotection. The present study was designed to elucidate, for the first time, the impact of prolonged hyperglycaemia conditions on a population of PACAP-like immunoreactive neurons in selected parts of the porcine gastrointestinal tract. The experiment was conducted on 10 juvenile female pigs assigned to two experimental groups: The DM group (pigs with streptozocin-induced diabetes) and the C group (control pigs). Diabetes conditions were induced by a single intravenous injection of streptozocin. Six weeks after the induction of diabetes, all animals were euthanised and further collected, and fixed fragments of the stomach, duodenum, jejunum, ileum and descending colon were processed using the routine double-labelling immunofluorescence technique. Streptozotocin-induced hyperglycaemia caused a significant increase in the population of PACAP-containing enteric neurons in the porcine stomach, small intestines and descending colon. The recorded changes may result from the direct toxic effect of hyperglycaemia on the ENS neurons, oxidative stress or inflammatory conditions accompanying hyperglycaemia and suggest that PACAP is involved in regulatory processes of the GIT function in the course of diabetes.
Collapse
Affiliation(s)
- Katarzyna Palus
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland; (M.B.); (J.C.)
- Correspondence: ; Tel.: +48-895234460
| | - Michał Bulc
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland; (M.B.); (J.C.)
| | - Jarosław Całka
- Department of Clinical Physiology, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-718 Olsztyn, Poland; (M.B.); (J.C.)
| | - Łukasz Zielonka
- Department of Veterinary Prevention and Feed Hygiene, Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, Oczapowskiego Str. 13, 10-719 Olsztyn, Poland;
| | - Marcin Nowicki
- Institute of Anatomy, University of Leipzig, Liebigstraße 13, D-04103 Leipzig, Germany;
| |
Collapse
|
12
|
Pituitary Adenylate Cyclase-Activating Polypeptide: A Potent Therapeutic Agent in Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10030354. [PMID: 33653014 PMCID: PMC7996859 DOI: 10.3390/antiox10030354] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/13/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Stroke is a life-threatening condition that is characterized by secondary cell death processes that occur after the initial disruption of blood flow to the brain. The inability of endogenous repair mechanisms to sufficiently support functional recovery in stroke patients and the inadequate treatment options available are cause for concern. The pathology behind oxidative stress in stroke is of particular interest due to its detrimental effects on the brain. The oxidative stress caused by ischemic stroke overwhelms the neutralization capacity of the body's endogenous antioxidant system, which leads to an overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) and eventually results in cell death. The overproduction of ROS compromises the functional and structural integrity of brain tissue. Therefore, it is essential to investigate the mechanisms involved in oxidative stress to help obtain adequate treatment options for stroke. Here, we focus on the latest preclinical research that details the mechanisms behind secondary cell death processes that cause many central nervous system (CNS) disorders, as well as research that relates to how the neuroprotective molecular mechanisms of pituitary adenylate cyclase-activating polypeptides (PACAPs) could make these molecules an ideal candidate for the treatment of stroke.
Collapse
|
13
|
Southey BR, Zhang P, Keever MR, Rymut HE, Johnson RW, Sweedler JV, Rodriguez-Zas SL. Effects of maternal immune activation in porcine transcript isoforms of neuropeptide and receptor genes. J Integr Neurosci 2021; 20:21-31. [PMID: 33834688 PMCID: PMC8103820 DOI: 10.31083/j.jin.2021.01.332] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/11/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
The prolonged effects of maternal immune activation in response stressors during gestation on the offspring's molecular pathways after birth are beginning to be understood. An association between maternal immune activation and neurodevelopmental and behavior disorders such as autism and schizophrenia spectrum disorders has been detected in long-term gene dysregulation. The incidence of alternative splicing among neuropeptides and neuropeptide receptor genes, critical cell-cell signaling molecules, associated with behavior may compromise the replicability of reported maternal immune activation effects at the gene level. This study aims to advance the understanding of the effect of maternal immune activation on transcript isoforms of the neuropeptide system (including neuropeptide, receptor and connecting pathway genes) underlying behavior disorders later in life. Recognizing the wide range of bioactive peptides and functional receptors stemming from alternative splicing, we studied the effects of maternal immune activation at the transcript isoform level on the hippocampus and amygdala of three-week-old pigs exposed to maternal immune activation due to viral infection during gestation. In the hippocampus and amygdala, 29 and 9 transcript isoforms, respectively, had maternal immune activation effects (P-value < 0.01). We demonstrated that the study of the effect of maternal immune activation on neuropeptide systems at the isoform level is necessary to expose opposite effects among transcript isoforms from the same gene. Genes were maternal immune activation effects have also been associated with neurodevelopmental and behavior disorders. The characterization of maternal immune activation effects at the transcript isoform level advances the understanding of neurodevelopmental disorders and identifies precise therapeutic targets.
Collapse
Affiliation(s)
- Bruce R Southey
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Pan Zhang
- Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Marissa R Keever
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Haley E Rymut
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Rodney W Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Jonathan V Sweedler
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| | - Sandra L Rodriguez-Zas
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Illinois Informatics Institute, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA.,Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, 61801 IL, USA
| |
Collapse
|