1
|
Sun X, Ding H, Li X, Wu Y, Huang X. Disulfiram-loaded nanovesicles hydrogel promotes healing of diabetic wound. J Transl Med 2024; 22:1066. [PMID: 39593097 PMCID: PMC11600750 DOI: 10.1186/s12967-024-05875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Traditional methods for treating diabetic wounds are limited in effectiveness because of their long healing times, the risk of immune rejection, and susceptibility to infection. Suppressing neutrophil extracellular traps (NETs) is an effective strategy for reducing persistent inflammation in diabetic wounds. Although disulfiram (DSF) can inhibit the significant increase of NETs in diabetic wounds, oral DSF suffers from rapid and harmful metabolism in the liver. To address these challenges, we developed a nanomedicine formulation in which DSF was incorporated into the hydrogel. METHODS In this study, we developed a DSF-laden sodium alginate hydrogel wound dressing, DEP@SA, and characterized its composition, properties, and performance. We examined the effects of DEP@SA on inflammatory phase-related markers such as NETs and their pathway proteins, inflammatory factors, and macrophage phenotypes in a high-glucose environment in vivo and in vitro. In addition, the effects of DEP@SA on tissue regenerative capacity such as epidermal proliferative migration and angiogenesis, were also assessed. RESULTS The results showed that by utilizing extracellular vesicles as a drug delivery system, we effectively mitigated the degradation of DSF via direct contact with aqueous solutions and ensured the stability of DSF@SA, which could then be applied to diabetic wounds. The inflammatory phase-related indicators revealed that DSF@SA effectively reduced inflammation levels, decreased NETs formation, suppressed the Caspase-1/GSDMD pathway in neutrophils, and promoted the polarization of M2 macrophages. Moreover, the hydrogel accelerated wound healing by promoting angiogenesis and re-epithelialization, thereby shortening the diabetic wound healing time. CONCLUSIONS This study confirmed that the DSF@SA composite dressing has the potential to enhance diabetic wound repair and offers a novel approach for drug reutilization.
Collapse
Affiliation(s)
- Xingzi Sun
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Hanxi Ding
- Department of Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Xingyu Li
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China
| | - Yongjian Wu
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China.
| | - Xi Huang
- Center for Infection and Immunity and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, 519000, China.
| |
Collapse
|
2
|
Kshirsagar S, Islam MA, Reddy AP, Reddy PH. Resolving the current controversy of use and reuse of housekeeping proteins in ageing research: Focus on saving people's tax dollars. Ageing Res Rev 2024; 100:102437. [PMID: 39067773 PMCID: PMC11384260 DOI: 10.1016/j.arr.2024.102437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
The use of housekeeping genes and proteins to normalize mRNA and protein levels in biomedical research has faced growing scrutiny. Researchers encounter challenges in determining the optimal frequency for running housekeeping proteins such as β-actin, Tubulin, and GAPDH for nuclear-encoded proteins, and Porin, HSP60, and TOM20 for mitochondrial proteins alongside experimental proteins. The regulation of these proteins varies with age, gender, disease progression, epitope nature, gel running conditions, and their reported sizes can differ among antibody suppliers. Additionally, anonymous readers have raised concerns about peer-reviewed and published articles, creating confusion and concern within the research and academic institutions. To clarify these matters, this minireview discusses the role of reference housekeeping proteins in Western blot analysis and outlines key considerations for their use as normalization controls. Instead of Western blotting of housekeeping proteins, staining of total proteins, using Amido Black and Coomassie Blue can be visualized the total protein content on a membrane. The reducing repeated Western blotting analysis of housekeeping proteins, will save resources, time and efforts and in turn increase the number of competitive grants from NIH and funding agencies. We also discussed the use of dot blots over traditional Western blots, when protein levels are low in rare tissues/specimens and cell lines. We sincerely hope that the facts, figures, and discussions presented in this article will clarify the current controversy regarding housekeeping protein(s) use, reuse, and functional aspects of housekeeping proteins. The contents presented in our article will be useful to students, scholars and researchers of all levels in cell biology, protein chemistry and mitochondrial research.
Collapse
Affiliation(s)
- Sudhir Kshirsagar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Arubala P Reddy
- Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Bi W, Mu X, Li Y, Sun Q, Xiang L, Hu M, Liu H. Delivery of neurotrophin-3 by RVG-Lamp2b-modified mesenchymal stem cell-derived exosomes alleviates facial nerve injury. Hum Cell 2024; 37:1378-1393. [PMID: 38858338 DOI: 10.1007/s13577-024-01086-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 04/24/2024] [Indexed: 06/12/2024]
Abstract
We aim to investigate the effect of RVG-Lamp2b-modified exosomes (exos) loaded with neurotrophin-3 (NT-3) on facial nerve injury. Exos were collected from control cells (Ctrl Exo) or bone marrow mesenchymal stem cells co-transfected with RVG-Lamp2b and NT-3 plasmids (RVG-NT-3 Exo) by gradient centrifugation and identified by western blotting, transmission electron microscopy, and nanoparticle tracking analysis. Effect of RVG-NT-3 Exo on oxidative stress damage was determined by analysis of the morphology, viability, and ROS production of neurons. Effect of RVG-NT-3 Exo on facial nerve axotomy (FNA) was determined by detecting ROS production, neuroinflammatory reaction, microglia activation, facial motor neuron (FMN) death, and myelin sheath repair. Loading NT-3 and modifying with RVG-Lamp2b did not alter the properties of the exos. Moreover, RVG-NT-3 Exo could effectively target neurons to deliver NT-3. Treatment with RVG-NT-3 Exo lowered H2O2-induced oxidative stress damage in primary neurons and Nsc-34 cells. RVG-NT-3 Exo treatment significantly decreased ROS production, neuroinflammatory response, FMN death, and elevated microglia activation and myelin sheath repair in FNA rat models. Our findings suggested that RVG-NT-3 Exo-mediated delivery of NT-3 is effective for the treatment of facial nerve injury.
Collapse
Affiliation(s)
- Wenting Bi
- Department of Stomatology, Beijing Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, 100000, China
| | - Xiaodan Mu
- Department of Stomatology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100000, China
| | - Yongfeng Li
- Department of Stomatology, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, 102200, China
| | - Qingyan Sun
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Lei Xiang
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 102200, China
| | - Min Hu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Huawei Liu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China.
| |
Collapse
|
4
|
Wang X, Mijiti W, Jia Q, Yi Z, Ma J, Zhou Z, Xie Z. Exploration of altered miRNA expression and function in MSC-derived extracellular vesicles in response to hydatid antigen stimulation. Front Microbiol 2024; 15:1381012. [PMID: 38601938 PMCID: PMC11004373 DOI: 10.3389/fmicb.2024.1381012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/14/2024] [Indexed: 04/12/2024] Open
Abstract
Background Hydatid disease is caused by Echinococcus parasites and can affect various tissues and organs in the body. The disease is characterized by the presence of hydatid cysts, which contain specific antigens that interact with the host's immune system. Mesenchymal stem cells (MSCs) are pluripotent stem cells that can regulate immunity through the secretion of extracellular vesicles (EVs) containing microRNAs (miRNAs). Methods In this study, hydatid antigens were isolated from sheep livers and mice peritoneal cavities. MSCs derived from mouse bone marrow were treated with different hydatid antigens, and EVs were isolated and characterized from the conditioned medium of MSCs. Small RNA library construction, miRNA target prediction, and differential expression analysis were conducted to identify differentially expressed miRNAs. Functional enrichment and network construction were performed to explore the biological functions of the target genes. Real-time PCR and Western blotting were used for miRNA and gene expression verification, while ELISA assays quantified TNF, IL-1, IL-6, IL-4, and IL-10 levels in cell supernatants. Results The study successfully isolated hydatid antigens and characterized MSC-derived EVs, demonstrating the impact of antigen concentration on MSC viability. Key differentially expressed miRNAs, such as miR-146a and miR-9-5p, were identified, with functional analyses revealing significant pathways like Endocytosis and MAPK signaling associated with these miRNAs' target genes. The miRNA-HUB gene regulatory network identified crucial miRNAs and HUB genes, such as Traf1 and Tnf, indicating roles in immune modulation and osteogenic differentiation. Protein-protein interaction (PPI) network analysis highlighted central HUB genes like Akt1 and Bcl2. ALP activity assays confirmed the influence of antigens on osteogenic differentiation, with reduced ALP activity observed. Expression analysis validated altered miRNA and chemokine expression post-antigen stimulation, with ELISA analysis showing a significant reduction in CXCL1 expression in response to antigen exposure. Conclusion This study provides insights into the role of MSC-derived EVs in regulating parasite immunity. The findings suggest that hydatid antigens can modulate the expression of miRNAs in MSC-derived EVs, leading to changes in chemokine expression and osteogenic capacity. These findings contribute to a better understanding of the immunomodulatory mechanisms involved in hydatid disease and provide potential therapeutic targets for the development of new treatment strategies.
Collapse
Affiliation(s)
- Xin Wang
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Wubulikasimu Mijiti
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Qiyu Jia
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zhifei Yi
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Junchao Ma
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Ziyu Zhou
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
| | - Zengru Xie
- Department of Orthopedics and Trauma, The First Affiliated Hospital of Xinjiang Medical University, Ürümqi, Xinjiang, China
- Key Laboratory of High Incidence Disease Research in Xingjiang (Xinjiang Medical University), Ministry of Education, Ürümqi, Xinjiang, China
- Xinjiang Clinical Research Center for Orthopedics, Xinjiang Medical University, Ürümqi, Xinjiang, China
| |
Collapse
|
5
|
Zhao X, Deng H, Feng Y, Wang Y, Yao X, Ma Y, Zhang L, Jie J, Yang P, Yang Y. Immune-cell-mediated tissue engineering strategies for peripheral nerve injury and regeneration. J Mater Chem B 2024; 12:2217-2235. [PMID: 38345580 DOI: 10.1039/d3tb02557h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
During the process of peripheral nerve repair, there are many complex pathological and physiological changes, including multi-cellular responses and various signaling molecules, and all these events establish a dynamic microenvironment for axon repair, regeneration, and target tissue/organ reinnervation. The immune system plays an indispensable role in the process of nerve repair and function recovery. An effective immune response not only involves innate-immune and adaptive-immune cells but also consists of chemokines and cytokines released by these immune cells. The elucidation of the orchestrated interplay of immune cells with nerve regeneration and functional restoration is meaningful for the exploration of therapeutic strategies. This review mainly enumerates the general immune cell response to peripheral nerve injury and focuses on their contributions to functional recovery. The tissue engineering-mediated strategies to regulate macrophages and T cells through physical and biochemical factors combined with scaffolds are discussed. The dynamic immune responses during peripheral nerve repair and immune-cell-mediated tissue engineering methods are presented, which provide a new insight and inspiration for immunomodulatory therapies in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Xueying Zhao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Hui Deng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuan Feng
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuehan Wang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Xiaomin Yao
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yuyang Ma
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Jing Jie
- Department of Clinical Laboratory, The Second Affiliated Hospital of Nantong University, 226001, Nantong, P. R. China.
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu Province and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, 226001, Nantong, P. R. China.
| |
Collapse
|