1
|
Russ E, Davis CM, Slaven JE, Bradfield DT, Selwyn RG, Day RM. Comparison of the Medical Uses and Cellular Effects of High and Low Linear Energy Transfer Radiation. TOXICS 2022; 10:toxics10100628. [PMID: 36287908 PMCID: PMC9609561 DOI: 10.3390/toxics10100628] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 05/14/2023]
Abstract
Exposure to ionizing radiation can occur during medical treatments, from naturally occurring sources in the environment, or as the result of a nuclear accident or thermonuclear war. The severity of cellular damage from ionizing radiation exposure is dependent upon a number of factors including the absorbed radiation dose of the exposure (energy absorbed per unit mass of the exposure), dose rate, area and volume of tissue exposed, type of radiation (e.g., X-rays, high-energy gamma rays, protons, or neutrons) and linear energy transfer. While the dose, the dose rate, and dose distribution in tissue are aspects of a radiation exposure that can be varied experimentally or in medical treatments, the LET and eV are inherent characteristics of the type of radiation. High-LET radiation deposits a higher concentration of energy in a shorter distance when traversing tissue compared with low-LET radiation. The different biological effects of high and low LET with similar energies have been documented in vivo in animal models and in cultured cells. High-LET results in intense macromolecular damage and more cell death. Findings indicate that while both low- and high-LET radiation activate non-homologous end-joining DNA repair activity, efficient repair of high-LET radiation requires the homologous recombination repair pathway. Low- and high-LET radiation activate p53 transcription factor activity in most cells, but high LET activates NF-kB transcription factor at lower radiation doses than low-LET radiation. Here we review the development, uses, and current understanding of the cellular effects of low- and high-LET radiation exposure.
Collapse
Affiliation(s)
- Eric Russ
- Graduate Program of Cellular and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Catherine M. Davis
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - John E. Slaven
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Dmitry T. Bradfield
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Reed G. Selwyn
- Department of Radiology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Regina M. Day
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence:
| |
Collapse
|
2
|
Macaeva E, Tabury K, Michaux A, Janssen A, Averbeck N, Moreels M, De Vos WH, Baatout S, Quintens R. High-LET Carbon and Iron Ions Elicit a Prolonged and Amplified p53 Signaling and Inflammatory Response Compared to low-LET X-Rays in Human Peripheral Blood Mononuclear Cells. Front Oncol 2021; 11:768493. [PMID: 34888245 PMCID: PMC8649625 DOI: 10.3389/fonc.2021.768493] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Understanding the differences in biological response to photon and particle radiation is important for optimal exploitation of particle therapy for cancer patients, as well as for the adequate application of radiation protection measures for astronauts. To address this need, we compared the transcriptional profiles of isolated peripheral blood mononuclear cells 8 h after exposure to 1 Gy of X-rays, carbon ions or iron ions with those of non-irradiated cells using microarray technology. All genes that were found differentially expressed in response to either radiation type were up-regulated and predominantly controlled by p53. Quantitative PCR of selected genes revealed a significantly higher up-regulation 24 h after exposure to heavy ions as compared to X-rays, indicating their prolonged activation. This coincided with increased residual DNA damage as evidenced by quantitative γH2AX foci analysis. Furthermore, despite the converging p53 signature between radiation types, specific gene sets related to the immune response were significantly enriched in up-regulated genes following irradiation with heavy ions. In addition, irradiation, and in particular exposure to carbon ions, promoted transcript variation. Differences in basal and iron ion exposure-induced expression of DNA repair genes allowed the identification of a donor with distinct DNA repair profile. This suggests that gene signatures may serve as a sensitive indicator of individual DNA damage repair capacity. In conclusion, we have shown that photon and particle irradiation induce similar transcriptional pathways, albeit with variable amplitude and timing, but also elicit radiation type-specific responses that may have implications for cancer progression and treatment
Collapse
Affiliation(s)
- Ellina Macaeva
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium.,Department of Oncology, KU Leuven, Leuven, Belgium
| | - Kevin Tabury
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Biomedical Engineering, University of South Carolina, Columbia, SC, United States
| | - Arlette Michaux
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Ann Janssen
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Nicole Averbeck
- Department of Biophysics, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
| | - Marjan Moreels
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| | - Winnok H De Vos
- Department of Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah Baatout
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium.,Department of Molecular Biotechnology, Ghent University, Ghent, Belgium
| | - Roel Quintens
- Radiobiology Unit, Studiecentrum voor kernenergie - Centre d'étude de l'énergie nucléaire (SCK CEN), Mol, Belgium
| |
Collapse
|
3
|
Averbeck D, Rodriguez-Lafrasse C. Role of Mitochondria in Radiation Responses: Epigenetic, Metabolic, and Signaling Impacts. Int J Mol Sci 2021; 22:ijms222011047. [PMID: 34681703 PMCID: PMC8541263 DOI: 10.3390/ijms222011047] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/24/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Until recently, radiation effects have been considered to be mainly due to nuclear DNA damage and their management by repair mechanisms. However, molecular biology studies reveal that the outcomes of exposures to ionizing radiation (IR) highly depend on activation and regulation through other molecular components of organelles that determine cell survival and proliferation capacities. As typical epigenetic-regulated organelles and central power stations of cells, mitochondria play an important pivotal role in those responses. They direct cellular metabolism, energy supply and homeostasis as well as radiation-induced signaling, cell death, and immunological responses. This review is focused on how energy, dose and quality of IR affect mitochondria-dependent epigenetic and functional control at the cellular and tissue level. Low-dose radiation effects on mitochondria appear to be associated with epigenetic and non-targeted effects involved in genomic instability and adaptive responses, whereas high-dose radiation effects (>1 Gy) concern therapeutic effects of radiation and long-term outcomes involving mitochondria-mediated innate and adaptive immune responses. Both effects depend on radiation quality. For example, the increased efficacy of high linear energy transfer particle radiotherapy, e.g., C-ion radiotherapy, relies on the reduction of anastasis, enhanced mitochondria-mediated apoptosis and immunogenic (antitumor) responses.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Correspondence:
| | - Claire Rodriguez-Lafrasse
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France;
- Department of Biochemistry and Molecular Biology, Lyon-Sud Hospital, Hospices Civils de Lyon, 69310 Pierre-Bénite, France
| |
Collapse
|
4
|
Carrier F, Liao Y, Mendenhall N, Guerrieri P, Todor D, Ahmad A, Dominello M, Joiner MC, Burmeister J. Three Discipline Collaborative Radiation Therapy (3DCRT) Special Debate: I would treat prostate cancer with proton therapy. J Appl Clin Med Phys 2019; 20:7-14. [PMID: 31166085 PMCID: PMC6612688 DOI: 10.1002/acm2.12621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- France Carrier
- Department of Radiation OncologyUniversity of MarylandBaltimoreMDUSA
| | - Yixiang Liao
- Department of Radiation OncologyRush University Medical CenterChicagoILUSA
| | | | | | - Dorin Todor
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVAUSA
| | - Anis Ahmad
- Department of Radiation OncologyUniversity of Miami, Sylvester Comprehensive Cancer Center, Miller School of MedicineMiamiFLUSA
| | - Michael Dominello
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Michael C. Joiner
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
| | - Jay Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMIUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMIUSA
| |
Collapse
|