Huai G, Qi P, Yang H, Wang Y. Characteristics of α-Gal epitope, anti-Gal antibody, α1,3 galactosyltransferase and its clinical exploitation (Review).
Int J Mol Med 2015;
37:11-20. [PMID:
26531137 PMCID:
PMC4687435 DOI:
10.3892/ijmm.2015.2397]
[Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 10/08/2015] [Indexed: 12/15/2022] Open
Abstract
The α-Gal epitope (Galα1,3Galα1,4GlcNAc-R) is ubiquitously presented in non-primate mammals, marsupials and New World Monkeys, but it is absent in humans, apes and Old World monkeys. However, the anti-Gal antibody (~1% of immunoglobulins) is naturally generated in human, and is found as the immunoglobulin G (IgG), IgM and IgA isotypes. Owing to the specific binding of the anti-Gal antibody with the α-Gal epitope, humans have a distinct anti-α-gal reactivity, which is responsible for hyperacute rejection of organs transplanted from α-gal donors. In addition, the α1,3 galactosyltransferases (α1,3GT) can catalyze the synthesis of the α-Gal epitope. Therefore, the α1,3GT gene, which encodes the α1,3GT, is developed profoundly. The distributions of the α-Gal epitope and anti-Gal antibody, and the activation of α1,3GT, reveal that the enzyme of α1,3GT in ancestral primates is ineffective. Comparison of the nucleotide sequence of the human α1,3-GT pseudogene to the corresponding different species sequence, and according to the evolutionary tree of different species, the results of evolutionary inactivation of the α1,3GT gene in ancestral primates attribute to the mutations under a stronger selective pressure. However, on the basis of the structure, the mechanism and the specificity of the α-Gal epitope and anti-Gal antibody, they can be applied to clinical exploitation. Knocking out the α1,3GT gene will eliminate the xenoantigen, Gal(α1,3)Gal, so that the transplantation of α1,3GT gene knockout pig organ into human becomes a potential clinically acceptable treatment for solving the problem of organ shortage. By contrast, the α-Gal epitope expressed through the application of chemical, biochemical and genetic engineering can be exploited for the clinical use. Targeting anti-Gal-mediated autologous tumor vaccines, which express α-Gal epitope to antigen-presenting cells, would increase their immunogenicity and elicit an immune response, which will be potent enough to eradicate the residual tumor cells. For tumor vaccines, the way of increasing immunogenicity of certain viral vaccines, including flu vaccines and human immunodeficiency virus vaccines, can also be used in the elderly. Recently, α-Gal epitope nanoparticles have been applied to accelerate wound healing and further directions on regeneration of internally injured tissues.
Collapse