1
|
Crivelli SM, Gaifullina A, Chatton JY. Exploring the role of mitochondrial uncoupling protein 4 in brain metabolism: implications for Alzheimer's disease. Front Neurosci 2024; 18:1483708. [PMID: 39381683 PMCID: PMC11459774 DOI: 10.3389/fnins.2024.1483708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
The brain's high demand for energy necessitates tightly regulated metabolic pathways to sustain physiological activity. Glucose, the primary energy substrate, undergoes complex metabolic transformations, with mitochondria playing a central role in ATP production via oxidative phosphorylation. Dysregulation of this metabolic interplay is implicated in Alzheimer's disease (AD), where compromised glucose metabolism, oxidative stress, and mitochondrial dysfunction contribute to disease progression. This review explores the intricate bioenergetic crosstalk between astrocytes and neurons, highlighting the function of mitochondrial uncoupling proteins (UCPs), particularly UCP4, as important regulators of brain metabolism and neuronal function. Predominantly expressed in the brain, UCP4 reduces the membrane potential in the inner mitochondrial membrane, thereby potentially decreasing the generation of reactive oxygen species. Furthermore, UCP4 mitigates mitochondrial calcium overload and sustains cellular ATP levels through a metabolic shift from mitochondrial respiration to glycolysis. Interestingly, the levels of the neuronal UCPs, UCP2, 4 and 5 are significantly reduced in AD brain tissue and a specific UCP4 variant has been associated to an increased risk of developing AD. Few studies modulating the expression of UCP4 in astrocytes or neurons have highlighted protective effects against neurodegeneration and aging, suggesting that pharmacological strategies aimed at activating UCPs, such as protonophoric uncouplers, hold promise for therapeutic interventions in AD and other neurodegenerative diseases. Despite significant advances, our understanding of UCPs in brain metabolism remains in its early stages, emphasizing the need for further research to unravel their biological functions in the brain and their therapeutic potential.
Collapse
Affiliation(s)
| | | | - Jean-Yves Chatton
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Preservation of mitochondrial membrane potential is necessary for lifespan extension from dietary restriction. GeroScience 2023:10.1007/s11357-023-00766-w. [PMID: 36877298 PMCID: PMC10400507 DOI: 10.1007/s11357-023-00766-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
Dietary restriction (DR) increases lifespan in many organisms, but its underlying mechanisms are not fully understood. Mitochondria play a central role in metabolic regulation and are known to undergo changes in structure and function in response to DR. Mitochondrial membrane potential (Δψm) is the driving force for ATP production and mitochondrial outputs that integrate many cellular signals. One such signal regulated by Δψm is nutrient-status sensing. Here, we tested the hypothesis that DR promotes longevity through preserved Δψm during adulthood. Using the nematode Caenorhabditis elegans, we find that Δψm declines with age relatively early in the lifespan, and this decline is attenuated by DR. Pharmacologic depletion of Δψm blocked the longevity and health benefits of DR. Genetic perturbation of Δψm and mitochondrial ATP availability similarly prevented lifespan extension from DR. Taken together, this study provides further evidence that appropriate regulation of Δψm is a critical factor for health and longevity in response to DR.
Collapse
|
3
|
Liu AR, Liu YN, Shen SX, Yan LR, Lv Z, Ding HX, Wang A, Yuan Y, Xu Q. Comprehensive Analysis and Validation of Solute Carrier Family 25 (SLC25) and Its Correlation with Immune Infiltration in Pan-Cancer. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4009354. [PMID: 36254139 PMCID: PMC9569204 DOI: 10.1155/2022/4009354] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/25/2022]
Abstract
As the largest gene family functioning in protein transport among human solute carriers, the SLC25 family (mitochondrial carrier family) can participate in development of cancer. However, a comprehensive exploration for the exactly roles of SLC family remains lacking. In the present study, a total of 15 functional SLC25 family genes were retrieved from all current publications. And multidimensional analyses were systematically performed based on the transcriptome and genome data of SLC25 family from a variety of online databases for their expression, immune cell infiltration, and cancer prognosis. Validation by qPCR and immunohistochemistry were further conducted for the expression of partial SLC25 family members in some tumor tissue. We found that the SLC25 family had strong correlation with immune cells, such as macrophages M2, CD8+ T cell, CD4+ T cell memory activated, and memory resting. Among them, SLC25A6 was most correlated with Macrophage M1 in uveal melanoma (r = -0.68, P = 1.9e - 0.5). Expression of mRNA level showed that SLC25A4 was downregulated in stomach adenocarcinoma and colon adenocarcinoma. SLC25A7 was highly expressed in stomach adenocarcinoma and colon adenocarcinoma. SLC25A23 was decreased in colon adenocarcinoma. qPCR and immunohistochemistry validation results were consistent with our bioinformatics prediction. SLC25A8 was associated with the prognosis of cancer. All these findings suggested that the SLC25 family might affects the immune microenvironment of the cancer and then had the potential to be predictive biomarkers for early diagnosis and prognosis as well as novel targets for individualized treatment of cancer.
Collapse
Affiliation(s)
- Ao-ran Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ying-nan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Shi-xuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Li-rong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Zhi Lv
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Han-xi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North NanjingBei Street, Heping District, Shenyang, 110001 Liaoning, China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
4
|
Kumar R, T A, Singothu S, Singh SB, Bhandari V. Uncoupling proteins as a therapeutic target for the development of new era drugs against neurodegenerative disorder. Pharmacotherapy 2022; 147:112656. [DOI: 10.1016/j.biopha.2022.112656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/21/2022]
|
5
|
Cho I, Song H, Cho JH. Flavonoids mitigate neurodegeneration in aged Caenorhabditis elegans by mitochondrial uncoupling. Food Sci Nutr 2020; 8:6633-6642. [PMID: 33312547 PMCID: PMC7723185 DOI: 10.1002/fsn3.1956] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/11/2022] Open
Abstract
Dietary supplementation of flavonoids has been shown to reduce the severity of neurodegenerative disorders such as dementia, Parkinson's disease, and Alzheimer's disease by their antioxidant effects. However, their low bioavailabilityin vivo raises the question of how much their antioxidant capacity actually contributes to the mitigating effects. The physicochemical properties of flavonoids suggest they could function as mitochondrial uncouplers. Moreover, mitochondrial uncoupling alleviated neurodegeneration in Caenorhabditis elegans during aging in previous research. Therefore, we investigated whether various flavonoids (fisetin, quercetin, apigenin, chrysin, catechin, and naringenin) could reduce neuronal defects by mitochondrial uncoupling in C. elegans. Both neuronal defects and mitochondrial membrane potential were reduced in aged worms in nearly all of the flavonoid treatments suggesting that flavonoids may reduce neurodegeneration in C. elegans. However, there was no significant reduction of neuronal defects in mitophagy-deficient pink-1/pdr-1 double mutants under flavonoid treatments. These results suggest that flavonoids could function as mitochondrial uncouplers to mitigate neurodegeneration in aged C. elegans, possibly via a PINK1/Parkin mitophagy process.
Collapse
Affiliation(s)
- Injeong Cho
- Department of Biology EducationCollege of EducationChosun UniversityGwangjuKorea
| | - Hyun‐Ok Song
- Department of Infection BiologyWonkwang University School of MedicineIksanJeonbukKorea
| | - Jeong Hoon Cho
- Department of Biology EducationCollege of EducationChosun UniversityGwangjuKorea
| |
Collapse
|
6
|
Jayarathne S, Ramalingam L, Edwards H, Vanapalli SA, Moustaid-Moussa N. Tart Cherry Increases Lifespan in Caenorhabditis elegans by Altering Metabolic Signaling Pathways. Nutrients 2020; 12:E1482. [PMID: 32443669 PMCID: PMC7285199 DOI: 10.3390/nu12051482] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/01/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023] Open
Abstract
Aging and healthspan are determined by both environmental and genetic factors. The insulin/insulin-like growth factor-1(IGF-1) pathway is a key mediator of aging in Caenorhabditis elegans and mammals. Specifically, DAF-2 signaling, an ortholog of human IGF, controls DAF-16/FOXO transcription factor, a master regulator of metabolism and longevity. Moreover, mitochondrial dysfunction and oxidative stress are both linked to aging. We propose that daily supplementation of tart cherry extract (TCE), rich in anthocyanins with antioxidant properties may exert dual benefits for mitochondrial function and oxidative stress, resulting in beneficial effects on aging in C. elegans. We found that TCE supplementation at 6 μg or 12 μg/mL, increased (p < 0.05) the mean lifespan of wild type N2 worms, respectively, when compared to untreated control worms. Consistent with these findings, TCE upregulated (p < 0.05) expression of longevity-related genes such as daf-16 and aak-2 (but not daf-2 or akt-1 genes) and genes related to oxidative stress such as sod-2. Further, we showed that TCE supplementation increased spare respiration in N2 worms. However, TCE did not change the mean lifespan of daf-16 and aak-2 mutant worms. In conclusion, our findings indicate that TCE confers healthspan benefits in C. elegans through enhanced mitochondrial function and reduced oxidative stress, mainly via the DAF-16 pathway.
Collapse
Affiliation(s)
- Shasika Jayarathne
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| | - Latha Ramalingam
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| | - Hunter Edwards
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (H.E.); (S.A.V.)
| | - Siva A. Vanapalli
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (H.E.); (S.A.V.)
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Naima Moustaid-Moussa
- Department of Nutritional Sciences, Obesity Research Institute, Texas Tech University, Lubbock, TX 79409, USA; (S.J.); (L.R.)
| |
Collapse
|
7
|
Cunningham CN, Rutter J. 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport. EMBO Rep 2020; 21:e50071. [PMID: 32329174 DOI: 10.15252/embr.202050071] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic compartmentalization enabled by mitochondria is key feature of many cellular processes such as energy conversion to ATP production, redox balance, and the biosynthesis of heme, urea, nucleotides, lipids, and others. For a majority of these functions, metabolites need to be transported across the impermeable inner mitochondrial membrane by dedicated carrier proteins. Here, we examine the substrates, structural features, and human health implications of four mitochondrial metabolite carrier families: the SLC25A family, the mitochondrial ABCB transporters, the mitochondrial pyruvate carrier (MPC), and the sideroflexin proteins.
Collapse
Affiliation(s)
- Corey N Cunningham
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Augustin K, Khabbush A, Williams S, Eaton S, Orford M, Cross JH, Heales SJR, Walker MC, Williams RSB. Mechanisms of action for the medium-chain triglyceride ketogenic diet in neurological and metabolic disorders. Lancet Neurol 2017; 17:84-93. [PMID: 29263011 DOI: 10.1016/s1474-4422(17)30408-8] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 11/03/2017] [Accepted: 11/20/2017] [Indexed: 12/16/2022]
Abstract
High-fat, low-carbohydrate diets, known as ketogenic diets, have been used as a non-pharmacological treatment for refractory epilepsy. A key mechanism of this treatment is thought to be the generation of ketones, which provide brain cells (neurons and astrocytes) with an energy source that is more efficient than glucose, resulting in beneficial downstream metabolic changes, such as increasing adenosine levels, which might have effects on seizure control. However, some studies have challenged the central role of ketones because medium-chain fatty acids, which are part of a commonly used variation of the diet (the medium-chain triglyceride ketogenic diet), have been shown to directly inhibit AMPA receptors (glutamate receptors), and to change cell energetics through mitochondrial biogenesis. Through these mechanisms, medium-chain fatty acids rather than ketones are likely to block seizure onset and raise seizure threshold. The mechanisms underlying the ketogenic diet might also have roles in other disorders, such as preventing neurodegeneration in Alzheimer's disease, the proliferation and spread of cancer, and insulin resistance in type 2 diabetes. Analysing medium-chain fatty acids in future ketogenic diet studies will provide further insights into their importance in modified forms of the diet. Moreover, the results of these studies could facilitate the development of new pharmacological and dietary therapies for epilepsy and other disorders.
Collapse
Affiliation(s)
- Katrin Augustin
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Aziza Khabbush
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sophie Williams
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Simon Eaton
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Michael Orford
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - J Helen Cross
- Neurosciences Unit, UCL Institute of Child Health, University College London, London, UK
| | - Simon J R Heales
- UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, University College London, London, UK
| | - Robin S B Williams
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, UK.
| |
Collapse
|
9
|
Cho I, Song HO, Cho JH. Mitochondrial Uncoupling Attenuates Age-Dependent Neurodegeneration in C. elegans. Mol Cells 2017; 40:864-870. [PMID: 29081084 PMCID: PMC5712516 DOI: 10.14348/molcells.2017.0172] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/08/2017] [Accepted: 09/21/2017] [Indexed: 12/19/2022] Open
Abstract
The uncoupling protein 4 (ucp-4) gene is involved in age-dependent neurodegeneration in C. elegans. Therefore, we aimed to investigate the mechanism underlying the association between mitochondrial uncoupling and neurodegeneration by examining the effects of uncoupling agents and ucp-4 overexpression in C. elegans. Treatment with either DNP or CCCP improved neuronal defects in wild type during aging. Uncoupling agents also restored neuronal phenotypes of ucp-4 mutants to those exhibited by wild type, while ucp-4 overexpression attenuated the severity of age-dependent neurodegeneration. Neuronal improvements were further associated with reductions in mitochondrial membrane potentials. However, these age-dependent neuroprotective effects were limited in mitophagy-deficient mutant, pink-1, background. These results suggest that membrane uncoupling can attenuate age-dependent neurodegeneration by stimulating mitophagy.
Collapse
Affiliation(s)
- Injeong Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| | - Hyun-Ok Song
- Department of Infection Biology, Wonkwang University School of Medicine, Iksan 54538,
Korea
| | - Jeong Hoon Cho
- Department of Biology Education, College of Education, Chosun University, Gwangju 61452,
Korea
| |
Collapse
|