1
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
2
|
Erguven M, Kilic S, Karaca E, Diril MK. Genetic complementation screening and molecular docking give new insight on phosphorylation-dependent Mastl kinase activation. J Biomol Struct Dyn 2023; 41:8241-8253. [PMID: 36270968 DOI: 10.1080/07391102.2022.2131627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/26/2022] [Indexed: 10/24/2022]
Abstract
Mastl is a mitotic kinase that is essential for error-free chromosome segregation. It is an atypical member of AGC kinase family, possessing a unique non-conserved middle region. The mechanism of Mastl activation has been studied extensively in vitro. Phosphorylation of several residues were identified to be crucial for activation. These sites correspond to T193 and T206 in the activation loop and S861 in the C-terminal tail of mouse Mastl. To date, the significance of these phosphosites was not confirmed in intact mammalian cells. Here, we utilize a genetic complementation approach to determine the essentials of mammalian Mastl kinase activation. We used tamoxifen-inducible conditional knockout mouse embryonic fibroblasts to delete endogenous Mastl and screened various mutants for their ability to complement its loss. S861A mutant was able to complement endogenous Mastl loss. In parallel, we performed computational molecular docking studies to evaluate the significance of this residue for kinase activation. Our in-depth sequence and structure analysis revealed that Mastl pS861 does not belong to a conformational state, where the phosphoresidue contributes to C-tail docking. C-tail of Mastl is relatively short and it lacks a hydrophobic (HF) motif that would otherwise help its anchoring over N-lobe, required for the final steps of kinase activation. Our results show that phosphorylation of Mastl C-tail turn motif (S861) is dispensable for kinase function in cellulo.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehmet Erguven
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Seval Kilic
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - Ezgi Karaca
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
| | - M Kasim Diril
- Izmir Biomedicine and Genome Center, Izmir, Turkey
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Izmir, Turkey
- Department of Medical Biology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey
| |
Collapse
|
3
|
Yoon JS, Lee CW. Protein phosphatases regulate the liver microenvironment in the development of hepatocellular carcinoma. Exp Mol Med 2022; 54:1799-1813. [PMID: 36380016 PMCID: PMC9722691 DOI: 10.1038/s12276-022-00883-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The liver is a complicated heterogeneous organ composed of different cells. Parenchymal cells called hepatocytes and various nonparenchymal cells, including immune cells and stromal cells, are distributed in liver lobules with hepatic architecture. They interact with each other to compose the liver microenvironment and determine its characteristics. Although the liver microenvironment maintains liver homeostasis and function under healthy conditions, it also shows proinflammatory and profibrogenic characteristics that can induce the progression of hepatitis and hepatic fibrosis, eventually changing to a protumoral microenvironment that contributes to the development of hepatocellular carcinoma (HCC). According to recent studies, phosphatases are involved in liver diseases and HCC development by regulating protein phosphorylation in intracellular signaling pathways and changing the activities and characteristics of liver cells. Therefore, this review aims to highlight the importance of protein phosphatases in HCC development and in the regulation of the cellular components in the liver microenvironment and to show their significance as therapeutic targets.
Collapse
Affiliation(s)
- Joon-Sup Yoon
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea
| | - Chang-Woo Lee
- grid.264381.a0000 0001 2181 989XDepartment of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, 16419 Republic of Korea ,grid.264381.a0000 0001 2181 989XDepartment of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351 Republic of Korea
| |
Collapse
|
4
|
Modulation of protein phosphatase 1 gamma 2 during cell division of cervical cancer HeLa cells. Contemp Oncol (Pozn) 2021; 25:125-132. [PMID: 34667439 PMCID: PMC8506433 DOI: 10.5114/wo.2021.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/13/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction Protein phosphatases (PP) and kinases are known to regulate the cell cycle dynamics. Although kinases have been studied extensively, most of the phosphatases are still unexplored. Therefore, the present study aimed to investigate the association of an isoform of PP1 family protein phosphatases 1 gamma 2 (PP1γ2) in the regulation of cervical cancer HeLa cell proliferation. Material and methods Expression of PP1γ2 transcript and protein was assessed in the cervical cancer cell line of HeLa cells through RT-PCR and western blotting. Flow cytometry was employed to confirm its expression quantitatively, and Immuno-fluorescence was done to evaluate the distribution of PP1γ2 in the dividing mononuclear and Taxol-induced multipolar HeLa cells. PP1γ2-specific siRNA-mediated silencing was done to understand downstream pathways. The effect of the hypoxic tumour microenvironment on PP1γ2 expression was also evaluated. Results RT-PCR and western blotting confirmed the expression of PP1γ2 in HeLa cells, and flow cytometry analysis established intracellular expression of PP1γ2. Immunofluorescence is localized PP1γ2 in the nucleus of mononuclear cells during interphase, whereas it is transiently redistributed to spindle poles throughout the cell division and localized back to the nucleus after complete karyokinesis. Taxol-induced multipolar HeLa cells also showed a temporal redistribution of PP1γ2 on the spindle poles. Hypoxic conditions upregulated PP1γ2 expression, but downregulated PP1γ2 levels through siRNA increased GSK3β phosphorylation. Conclusions Collectively, data suggests that PP1γ2 is modulated during HeLa cell division and regulates GSK3β phosphorylation, which may regulate downstream signalling of cell division.
Collapse
|
5
|
Kocakaplan D, Karabürk H, Dilege C, Kirdök I, Bektas SN, Caydasi AK. Protein phosphatase 1 in association with Bud14 inhibits mitotic exit in Saccharomyces cerevisiae. eLife 2021; 10:72833. [PMID: 34633288 PMCID: PMC8577847 DOI: 10.7554/elife.72833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
Mitotic exit in budding yeast is dependent on correct orientation of the mitotic spindle along the cell polarity axis. When accurate positioning of the spindle fails, a surveillance mechanism named the spindle position checkpoint (SPOC) prevents cells from exiting mitosis. Mutants with a defective SPOC become multinucleated and lose their genomic integrity. Yet, a comprehensive understanding of the SPOC mechanism is missing. In this study, we identified the type 1 protein phosphatase, Glc7, in association with its regulatory protein Bud14 as a novel checkpoint component. We further showed that Glc7-Bud14 promotes dephosphorylation of the SPOC effector protein Bfa1. Our results suggest a model in which two mechanisms act in parallel for a robust checkpoint response: first, the SPOC kinase Kin4 isolates Bfa1 away from the inhibitory kinase Cdc5, and second, Glc7-Bud14 dephosphorylates Bfa1 to fully activate the checkpoint effector.
Collapse
Affiliation(s)
- Dilara Kocakaplan
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Hüseyin Karabürk
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Cansu Dilege
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Idil Kirdök
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Seyma Nur Bektas
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| | - Ayse Koca Caydasi
- Department of Molecular Biology and Genetics, Koç University, Istanbul, Turkey
| |
Collapse
|
6
|
Wang Q, Zhang Q, Leung ELH, Chen Y, Yao X. Exploring the thermodynamic, kinetic and inhibitory mechanisms of 5-iTU targeting mitotic kinase haspin by integrated molecular dynamics. Phys Chem Chem Phys 2021; 23:18404-18413. [PMID: 34612381 DOI: 10.1039/d1cp02783b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
As a human mitotic kinase, haspin is considered as a promising target for various diseases including cancers. However, no inhibitors targeting haspin have entered clinical trials presently. 5-iTU (5-iodotubercidin) is a useful and classical chemical probe for the investigation of haspin activity, but its inhibitory mechanism remains unclear. In this study, integrated molecular dynamics (MD) of conventional MD, extended adaptive biasing force (eABF), random acceleration MD and well-tempered metadynamics were applied to investigate the thermodynamic and kinetic features of 5-iTU and three derivatives targeting haspin. To emphasize the importance of gatekeeper Phe605, two haspin mutants (F605Y and F605T) were also built. The results showed that the binding affinity of 5-iTU and haspin was highest in all wild type (WT) systems, relying on the strong halogen aromatic π interaction between 5-iTU and gatekeeper Phe605. Gatekeeper mutations, because of damage to this interaction, led to the rearrangement of water distributions at the binding site and the decrease of 5-iTU residence times. Additionally, compared with the smaller 5-fTU, 5-iTU dissociated from WT haspin with more difficulty through distinct unbinding pathways. These findings will provide crucial guidance for the design and development of novel haspin inhibitors and the rational modification of existing inhibitors.
Collapse
Affiliation(s)
- Qianqian Wang
- Chronic Disease Research Center, Medical College, Dalian University, Dalian 116622, China.
| | | | | | | | | |
Collapse
|
7
|
Hwang S, Kim MH, Lee CW. Ssu72 Dual-Specific Protein Phosphatase: From Gene to Diseases. Int J Mol Sci 2021; 22:3791. [PMID: 33917542 PMCID: PMC8038829 DOI: 10.3390/ijms22073791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 12/22/2022] Open
Abstract
More than 70% of eukaryotic proteins are regulated by phosphorylation. However, the mechanism of dephosphorylation that counteracts phosphorylation is less studied. Phosphatases are classified into 104 distinct groups based on substrate-specific features and the sequence homologies in their catalytic domains. Among them, dual-specificity phosphatases (DUSPs) that dephosphorylate both phosphoserine/threonine and phosphotyrosine are important for cellular homeostasis. Ssu72 is a newly studied phosphatase with dual specificity that can dephosphorylate both phosphoserine/threonine and phosphotyrosine. It is important for cell-growth signaling, metabolism, and immune activation. Ssu72 was initially identified as a phosphatase for the Ser5 and Ser7 residues of the C-terminal domain of RNA polymerase II. It prefers the cis configuration of the serine-proline motif within its substrate and regulates Pin1, different from other phosphatases. It has recently been reported that Ssu72 can regulate sister chromatid cohesion and the separation of duplicated chromosomes during the cell cycle. Furthermore, Ssu72 appears to be involved in the regulation of T cell receptor signaling, telomere regulation, and even hepatocyte homeostasis in response to a variety of stress and damage signals. In this review, we aim to summarize various functions of the Ssu72 phosphatase, their implications in diseases, and potential therapeutic indications.
Collapse
Affiliation(s)
- Soeun Hwang
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
| | - Min-Hee Kim
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
| | - Chang-Woo Lee
- Department of Molecular Cell Biology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Korea; (S.H.); (M.-H.K.)
- SKKU Institute for Convergence, Sungkyunkwan University, Suwon 16419, Korea
- Curogen Technology, Suwon 16419, Korea
| |
Collapse
|
8
|
Guo X, Ramirez I, Garcia YA, Velasquez EF, Gholkar AA, Cohn W, Whitelegge JP, Tofig B, Damoiseaux R, Torres JZ. DUSP7 regulates the activity of ERK2 to promote proper chromosome alignment during cell division. J Biol Chem 2021; 296:100676. [PMID: 33865857 PMCID: PMC8131738 DOI: 10.1016/j.jbc.2021.100676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/20/2022] Open
Abstract
Human cell division is a highly regulated process that relies on the accurate capture and movement of chromosomes to the metaphase plate. Errors in the fidelity of chromosome congression and alignment can lead to improper chromosome segregation, which is correlated with aneuploidy and tumorigenesis. These processes are known to be regulated by extracellular signal-regulated kinase 2 (ERK2) in other species, but the role of ERK2 in mitosis in mammals remains unclear. Here, we have identified the dual-specificity phosphatase 7 (DUSP7), known to display selectivity for ERK2, as important in regulating chromosome alignment. During mitosis, DUSP7 bound to ERK2 and regulated the abundance of active phospho-ERK2 through its phosphatase activity. Overexpression of DUSP7, but not catalytically inactive mutants, led to a decrease in the levels of phospho-ERK2 and mitotic chromosome misalignment, while knockdown of DUSP7 also led to defective chromosome congression that resulted in a prolonged mitosis. Consistently, knockdown or chemical inhibition of ERK2 or chemical inhibition of the MEK kinase that phosphorylates ERK2 led to chromosome alignment defects. Our results support a model wherein MEK-mediated phosphorylation and DUSP7-mediated dephosphorylation regulate the levels of active phospho-ERK2 to promote proper cell division.
Collapse
Affiliation(s)
- Xiao Guo
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ivan Ramirez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Yenni A Garcia
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Erick F Velasquez
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Ankur A Gholkar
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Bobby Tofig
- California NanoSystems Institute, University of California, Los Angeles, California, USA
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, California, USA; Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Jorge Z Torres
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA.
| |
Collapse
|
9
|
MnTE-2-PyP Suppresses Prostate Cancer Cell Growth via H 2O 2 Production. Antioxidants (Basel) 2020; 9:antiox9060490. [PMID: 32512786 PMCID: PMC7346125 DOI: 10.3390/antiox9060490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/03/2020] [Indexed: 12/25/2022] Open
Abstract
Prostate cancer patients are often treated with radiotherapy. MnTE-2-PyP, a superoxide dismutase (SOD) mimic, is a known radioprotector of normal tissues. Our recent work demonstrated that MnTE-2-PyP also inhibits prostate cancer progression with radiotherapy; however, the mechanisms remain unclear. In this study, we identified that MnTE-2-PyP-induced intracellular H2O2 levels are critical in inhibiting the growth of PC3 and LNCaP cells, but the increased H2O2 levels affected the two cancer cells differently. In PC3 cells, many proteins were thiol oxidized with MnTE-2-PyP treatment, including Ser/Thr protein phosphatase 1 beta catalytic subunit (PP1CB). This resulted in reduced PP1CB activity; however, overall cell cycle progression was not altered, so this is not the main mechanism of PC3 cell growth inhibition. High H2O2 levels by MnTE-2-PyP treatment induced nuclear fragmentation, which could be synergistically enhanced with radiotherapy. In LNCaP cells, thiol oxidation by MnTE-2-PyP treatment was not observed previously and, similarly to PC3 cells, there was no effect of MnTE-2-PyP treatment on cell cycle progression. However, in LNCaP cells, MnTE-2-PyP caused an increase in low RNA population and sub-G1 population of cells, which indicates that MnTE-2-PyP treatment may cause cellular quiescence or direct cancer cell death. The protein oxidative modifications and mitotic catastrophes caused by MnTE-2-PyP may be the major contributors to cell growth inhibition in PC3 cells, while in LNCaP cells, tumor cell quiescence or cell death appears to be major factors in MnTE-2-PyP-induced growth inhibition.
Collapse
|
10
|
Keating L, Touati SA, Wassmann K. A PP2A-B56-Centered View on Metaphase-to-Anaphase Transition in Mouse Oocyte Meiosis I. Cells 2020; 9:E390. [PMID: 32046180 PMCID: PMC7072534 DOI: 10.3390/cells9020390] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Meiosis is required to reduce to haploid the diploid genome content of a cell, generating gametes-oocytes and sperm-with the correct number of chromosomes. To achieve this goal, two specialized cell divisions without intermediate S-phase are executed in a time-controlled manner. In mammalian female meiosis, these divisions are error-prone. Human oocytes have an exceptionally high error rate that further increases with age, with significant consequences for human fertility. To understand why errors in chromosome segregation occur at such high rates in oocytes, it is essential to understand the molecular players at work controlling these divisions. In this review, we look at the interplay of kinase and phosphatase activities at the transition from metaphase-to-anaphase for correct segregation of chromosomes. We focus on the activity of PP2A-B56, a key phosphatase for anaphase onset in both mitosis and meiosis. We start by introducing multiple roles PP2A-B56 occupies for progression through mitosis, before laying out whether or not the same principles may apply to the first meiotic division in oocytes, and describing the known meiosis-specific roles of PP2A-B56 and discrepancies with mitotic cell cycle regulation.
Collapse
Affiliation(s)
- Leonor Keating
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| | - Sandra A. Touati
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| | - Katja Wassmann
- Mammalian Oocyte Meiosis (MOM) UMR7622, Institut de Biologie Paris Seine, Sorbonne Université, 75005 Paris, France; (L.K.); (S.A.T.)
- CNRS UMR7622 Developmental Biology Lab, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
11
|
Quantitative proteomics indicate a strong correlation of mitotic phospho-/dephosphorylation with non-structured regions of substrates. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2019; 1868:140295. [PMID: 31676455 DOI: 10.1016/j.bbapap.2019.140295] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 10/11/2019] [Accepted: 10/24/2019] [Indexed: 01/21/2023]
Abstract
Protein phosphorylation plays a critical role in the regulation and progression of mitosis. >40,000 phosphorylated residues and the associated kinases have been identified to date via proteomic analyses. Although some of these phosphosites are associated with regulation of either protein-protein interactions or the catalytic activity of the substrate protein, the roles of most mitotic phosphosites remain unclear. In this study, we examined structural properties of mitotic phosphosites and neighboring residues to understand the role of heavy phosphorylation in non-structured domains. Quantitative mass spectrometry analysis of mitosis-arrested and non-arrested HeLa cells revealed >4100 and > 2200 residues either significantly phosphorylated or dephosphorylated, respectively, at mitotic entry. The calculated disorder scores of amino acid sequences of neighboring individual phosphosites revealed that >70% of dephosphorylated phosphosites exist in disordered regions, whereas 50% of phosphorylated sites exist in non-structured domains. A clear inverse correlation was observed between probability of phosphorylation in non-structured domain and increment of phosphorylation in mitosis. These results indicate that at entry to mitosis, a significant number of phosphate groups are removed from non-structured domains and transferred to more-structured domains. Gene ontology term analysis revealed that mitosis-related proteins are heavily phosphorylated, whereas RNA-related proteins are both dephosphorylated and phosphorylated, suggesting that heavy phosphorylation/dephosphorylation in non-structured domains of RNA-binding proteins plays a role in dynamic rearrangement of RNA-containing organelles, as well as other intracellular environments.
Collapse
|
12
|
Brautigan DL, Shenolikar S. Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annu Rev Biochem 2019; 87:921-964. [PMID: 29925267 DOI: 10.1146/annurev-biochem-062917-012332] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein serine/threonine phosphatases (PPPs) are ancient enzymes, with distinct types conserved across eukaryotic evolution. PPPs are segregated into types primarily on the basis of the unique interactions of PPP catalytic subunits with regulatory proteins. The resulting holoenzymes dock substrates distal to the active site to enhance specificity. This review focuses on the subunit and substrate interactions for PPP that depend on short linear motifs. Insights about these motifs from structures of holoenzymes open new opportunities for computational biology approaches to elucidate PPP networks. There is an expanding knowledge base of posttranslational modifications of PPP catalytic and regulatory subunits, as well as of their substrates, including phosphorylation, acetylation, and ubiquitination. Cross talk between these posttranslational modifications creates PPP-based signaling. Knowledge of PPP complexes, signaling clusters, as well as how PPPs communicate with each other in response to cellular signals should unlock the doors to PPP networks and signaling "clouds" that orchestrate and coordinate different aspects of cell physiology.
Collapse
Affiliation(s)
- David L Brautigan
- Center for Cell Signaling and Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA;
| | - Shirish Shenolikar
- Signature Research Programs in Cardiovascular and Metabolic Disorders and Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore 169857
| |
Collapse
|
13
|
Müller R, Stumpf M, Wehrstedt R, Sukumaran SK, Karow MA, Marko M, Noegel AA, Eichinger L. The regulatory subunit phr2AB of Dictyostelium discoideum phosphatase PP2A interacts with the centrosomal protein CEP161, a CDK5RAP2 ortholog. Genes Cells 2018; 23:923-931. [PMID: 30133996 DOI: 10.1111/gtc.12637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/29/2022]
Abstract
phr2AB is the regulatory subunit of the Dictyostelium discoideum phosphatase PP2A and is the ortholog of the human B55 regulatory subunit of PP2A. phr2AB was isolated as a binding partner of the centrosomal protein CEP161, an ortholog of mammalian CDK5RAP2. CEP161 is presumably a phosphoprotein and a component of the Hippo pathway. The interaction site was located in the N-terminal half of CEP161 which encompasses the γTURC binding domain in CEP161. This binding domain is responsible for binding of the γ-tubulin ring complex which allows microtubule nucleation at the centrosome. GFP-tagged phr2AB is diffusely distributed throughout the cell and enriched at the centrosome. Ectopic expression of phr2AB as GFP fusion protein led to multinucleation, aberrant nucleus centrosome ratios and an altered sensitivity to okadaic acid. Some of these features were also affected in cells over-expressing domains of CEP161 and in cells from patients suffering from primary microcephaly, which carried a mutated CDK5RAP2 gene.
Collapse
Affiliation(s)
- Rolf Müller
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Maria Stumpf
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Regina Wehrstedt
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Salil K Sukumaran
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Malte A Karow
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Marija Marko
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| | - Ludwig Eichinger
- Institute for Biochemistry I, Medical Faculty, University Hospital Cologne, Cologne, Germany.,Center for Molecular Medicine Cologne and Cologne Cluster on Cellular Stress Responses in Aging-Associated Diseases, Medical Faculty, University of Cologne, Cologne, Germany
| |
Collapse
|
14
|
Kutty RG, Talipov MR, Bongard RD, Lipinski RAJ, Sweeney NL, Sem DS, Rathore R, Ramchandran R. Dual Specificity Phosphatase 5-Substrate Interaction: A Mechanistic Perspective. Compr Physiol 2017; 7:1449-1461. [PMID: 28915331 DOI: 10.1002/cphy.c170007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian genome contains approximately 200 phosphatases that are responsible for catalytically removing phosphate groups from proteins. In this review, we discuss dual specificity phosphatase 5 (DUSP5). DUSP5 belongs to the dual specificity phosphatase (DUSP) family, so named after the family members' abilities to remove phosphate groups from serine/threonine and tyrosine residues. We provide a comparison of DUSP5's structure to other DUSPs and, using molecular modeling studies, provide an explanation for DUSP5's mechanistic interaction and specificity toward phospho-extracellular regulated kinase, its only known substrate. We also discuss new insights from molecular modeling studies that will influence our current thinking of mitogen-activated protein kinase signaling. Finally, we discuss the lessons learned from identifying small molecules that target DUSP5, which might benefit targeting efforts for other phosphatases. © 2017 American Physiological Society. Compr Physiol 7:1449-1461, 2017.
Collapse
Affiliation(s)
- Raman G Kutty
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA
| | - Marat R Talipov
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, New Mexico, USA
| | - Robert D Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Rachel A Jones Lipinski
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA.,Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Noreena L Sweeney
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Daniel S Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
15
|
Nagahori H, Nakamura K, Sumida K, Ito S, Ohtsuki S. Combining Genomics To Identify the Pathways of Post-Transcriptional Nongenotoxic Signaling and Energy Homeostasis in Livers of Rats Treated with the Pregnane X Receptor Agonist, Pregnenolone Carbonitrile. J Proteome Res 2017; 16:3634-3645. [PMID: 28825834 DOI: 10.1021/acs.jproteome.7b00364] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Transcriptomic, proteomic, phosphoproteomic, and metabolomic analyses were combined to determine the role of pregnane X receptor (PXR) in nongenotoxic signaling and energy homeostasis in liver after rats were repeatedly orally dosed with the PXR agonist pregnenolone carbonitrile (PCN) for 7 days. Analyses of mRNAs and proteins in the supernatant, membrane, and cytosolic fractions of enlarged liver homogenates showed diverse expression profiles. Gene set enrichment analysis showed that the synchronous increase in mRNAs and proteins involved in chemical carcinogenesis and the response to drug was possibly mediated by the PXR pathway and proteasome core complex assembly was possibly mediated by the Nrf2 pathway. In addition, levels of proteins in the endoplasmic reticulum lumen and involved in the acute-phase response showed specific increase with no change in mRNA level, and those composed of the mitochondrial inner membrane showed specific decrease. The analysis of phosphorylated peptides of poly(A) RNA binding proteins showed a decrease in phosphorylation, possibly by casein kinase 2, which may be related to the regulation of protein expression. Proteins involved in insulin signaling pathways showed an increase in phosphorylation, possibly by protein kinase A, and those involved in apoptosis showed a decrease. Metabolomic analysis suggested the activation of the pentose phosphate and anaerobic glycolysis pathways and the increase of amino acid and fatty acid levels, as occurs in the Warburg effect. In conclusion, the results of combined analyses suggest that PXR's effects are due to transcriptional and post-transcriptional regulation with alteration of nongenotoxic signaling pathways and energy homeostasis.
Collapse
Affiliation(s)
- Hirohisa Nagahori
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd. , 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | | | - Kayo Sumida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd. , 1-98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554-8558, Japan
| | | | | |
Collapse
|