1
|
Lambo MT, Ma H, Zhang H, Song P, Mao H, Cui G, Dai B, Li Y, Zhang Y. Mechanism of action, benefits, and research gap in fermented soybean meal utilization as a high-quality protein source for livestock and poultry. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:130-146. [PMID: 38357571 PMCID: PMC10864219 DOI: 10.1016/j.aninu.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/25/2023] [Accepted: 10/09/2023] [Indexed: 02/16/2024]
Abstract
Animal nutritionists have incessantly worked towards providing livestock with high-quality plant protein feed resources. Soybean meal (SBM) has been an essential and predominantly adopted vegetable protein source in livestock feeding for a long time; however, several SBM antinutrients could potentially impair the animal's performance and growth, limiting its use. Several processing methods have been employed to remove SBM antinutrients, including fermentation with fungal or bacterial microorganisms. According to the literature, fermentation, a traditional food processing method, could improve SBM's nutritional and functional properties, making it more suitable and beneficial to livestock. The current interest in health-promoting functional feed, which can enhance the growth of animals, improve their immune system, and promote physiological benefits more than conventional feed, coupled with the ban on the use of antimicrobial growth promoters, has caused a renewed interest in the use of fermented SBM (FSBM) in livestock diets. This review details the mechanism of SBM fermentation and its impacts on animal health and discusses the recent trend in the application and emerging advantages to livestock while shedding light on the research gap that needs to be critically addressed in future studies. FSBM appears to be a multifunctional high-quality plant protein source for animals. Besides removing soybean antinutrients, beneficial bioactive peptides and digestive enzymes are produced during fermentation, providing probiotics, antioxidants, and immunomodulatory effects. Critical aspects regarding FSBM feeding to animals remain uncharted, such as the duration of fermentation, the influence of feeding on digestive tissue development, choice of microbial strain, and possible environmental impact.
Collapse
Affiliation(s)
- Modinat T. Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haokai Ma
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Haosheng Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Peng Song
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Shanghai 200137, China
| | - Hongxiang Mao
- Wilmar (Shanghai) Biotechnology Research and Development Center Co., Ltd, Shanghai 200137, China
| | - Guowen Cui
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Baisheng Dai
- College of Electrical Engineering and Information, Northeast Agricultural University, Harbin 150030, China
| | - Yang Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
2
|
Zhang M, Wang O, Cai S, Zhao L, Zhao L. Composition, functional properties, health benefits and applications of oilseed proteins: A systematic review. Food Res Int 2023; 171:113061. [PMID: 37330842 DOI: 10.1016/j.foodres.2023.113061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/19/2023]
Abstract
Common oilseeds, such as soybean, peanut, rapeseed, sunflower seed, sesame seed and chia seed, are key sources of edible vegetable oils. Their defatted meals are excellent natural sources of plant proteins that can meet consumers' demand for health and sustainable substitutes for animal proteins. Oilseed proteins and their derived peptides are also associated with many health benefits, including weight loss and reduced risks of diabetes, hypertension, metabolic syndrome and cardiovascular events. This review summarizes the current status of knowledge on the protein and amino acid composition of common oilseeds as well as the functional properties, nutrition, health benefits and food applications of oilseed protein. Currently, oilseeds are widely applied in the food industry regarding for their health benefits and good functional properties. However, most oilseed proteins are incomplete proteins and their functional properties are not promising compared to animal proteins. They are also limited in the food industry due to their off-flavor, allergenic and antinutritional factors. These properties can be improved by protein modification. Therefore, in order to make better use of oilseed proteins, methods for improving their nutrition value, bioactive activity, functional and sensory characteristics, as well as the strategies for reducing their allergenicity were also discussed in this paper. Finally, examples for the application of oilseed proteins in the food industry are presented. Limitations and future perspectives for developing oilseed proteins as food ingredients are also pointed out. This review aims to foster thinking and generate novel ideas for future research. It will also provide novel ideas and broad prospects for the application of oilseeds in the food industry.
Collapse
Affiliation(s)
- Mingxin Zhang
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China
| | - Ou Wang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shengbao Cai
- Faculty of Food Science and Engineering, Yunnan Institute of Food Safety, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Lei Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| | - Liang Zhao
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Liu Y, Chen Y, Liu Y, Li M, Zhang Y, Shi L, Yang L, Li T, Li Y, Jiang Z, Liu Y, Wang C, Wang S. Downregulation of SMIM3 inhibits growth of leukemia via PI3K-AKT signaling pathway and correlates with prognosis of adult acute myeloid leukemia with normal karyotype. J Transl Med 2022; 20:612. [PMID: 36550462 PMCID: PMC9783723 DOI: 10.1186/s12967-022-03831-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) patients with normal karyotype (NK-AML) have significant variabilities in outcomes. The European Leukemia Net stratification system and some prognostic models have been used to evaluate risk stratification. However, these common standards still have some limitations. The biological functions and mechanisms of Small Integral Membrane Protein 3 (SMIM3) have seldomly been investigated. To this date, the prognostic value of SMIM3 in AML has not been reported. This study aimed to explore the clinical significance, biological effects and molecular mechanisms of SMIM3 in AML. METHODS RT-qPCR was applied to detect the expression level of SMIM3 in bone marrow specimens from 236 newly diagnosed adult AML patients and 23 healthy volunteers. AML cell lines, Kasumi-1 and THP-1, were used for lentiviral transfection. CCK8 and colony formation assays were used to detect cell proliferation. Cell cycle and apoptosis were analyzed by flow cytometry. Western blot was performed to explore relevant signaling pathways. The biological functions of SMIM3 in vivo were validated by xenograft tumor mouse model. Survival rate was evaluated by Log-Rank test and Kaplan-Meier. Cox regression model was used to analyze multivariate analysis. The correlations between SMIM3 and drug resistance were also explored. RESULTS Through multiple datasets and our clinical group, SMIM3 was shown to be significantly upregulated in adult AML compared to healthy subjects. SMIM3 overexpression conferred a worse prognosis and was identified as an independent prognostic factor in 95 adult NK-AML patients. Knockdown of SMIM3 inhibited cell proliferation and cell cycle progression, and induced cell apoptosis in AML cells. The reduced SMIM3 expression significantly suppressed tumor growth in the xenograft mouse model. Western blot analysis showed downregulation of p-PI3K and p-AKT in SMIM3-knockdown AML cell lines. SMIM3 may also be associated with some PI3K-AKT and first-line targeted drugs. CONCLUSIONS SMIM3 was highly expressed in adult AML, and such high-level expression of SMIM3 was associated with a poor prognosis in adult AML. Knockdown of SMIM3 inhibited the proliferation of AML through regulation of the PI3K-AKT signaling pathway. SMIM3 may serve as a potential prognostic marker and a therapeutic target for AML in the future.
Collapse
Affiliation(s)
- Yu Liu
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yufei Chen
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yajun Liu
- grid.40263.330000 0004 1936 9094Department of Orthopaedics, Warren Alpert Medical School/Rhode Island Hospital, Brown University, Providence, Rhode Island USA
| | - Mengya Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yu Zhang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Luyao Shi
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Lu Yang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Tao Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yafei Li
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Zhongxing Jiang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Yanfang Liu
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Chong Wang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| | - Shujuan Wang
- grid.412633.10000 0004 1799 0733Department of Hematology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052 China
| |
Collapse
|
4
|
Zhao B, Fan Y, Li H, Zhang C, Han R, Che D. Mitigative effects of Eleutheroside E against the mechanical barrier dysfunction induced by soybean agglutinin in IPEC-J2 cell line. J Anim Physiol Anim Nutr (Berl) 2022; 106:664-670. [PMID: 35014099 DOI: 10.1111/jpn.13677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/06/2021] [Accepted: 11/14/2021] [Indexed: 01/20/2023]
Abstract
Soybean agglutinin (SBA) is an anti-nutritional factor which decreases the mechanical barrier function in intestinal porcine jejunum epithelial cells (IPEC-J2). Eleutheroside E (EE) is a key part of Acanthopanax senticosus to exert pharmacological effects. This study aims to investigate the effects of EE on the barrier function in IPEC-J2 cells and to determine the ability of EE to enhance the protective effect of barrier function against SBA exposure. The IPEC-J2 cells were cultured in mediums with concentration of 0.1 mg/ml EE, 0.5 ml/ml SBA and 0.1 mg/ml EE pre-treated then treated with 0.5 mg/ml SBA. Then, the transepithelial electric resistance (TEER) value, inflammatory cytokines mRNA expression, tight junction mRNA and protein expression were tested by epithelial Voltohm meter, q-PCR and Western blot method respectively. The results showed that cells treated with 0.1 mg/ml EE had lower permeability (p < 0.05) while 0.5 mg/ml SBA treatment had higher permeability through tested TEER, and higher tight junction proteins (Claudin-3 and ZO-1) expressions and genes (Claudin-3, Occludin and ZO-1) expressions (p < 0.05) in 0.1 mg/ml EE group. IPEC-J2 cells pre-treated with 0.1 mg/ml EE could significantly improve the inflammatory response caused by 0.5 mg/ml SBA by up-regulation for IL-10, TGF-β, and down-regulation gene expression of IL-6, TNF-α and IFN-γ (p < 0.05). In conclusion, 0.1 mg/ml EE can improve the mechanical barrier function and could protect the effects while 0.5 mg/ml of SBA-induced barrier dysfunction in IPEC-J2.
Collapse
Affiliation(s)
- Bao Zhao
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Huijuan Li
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- College of Animal Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Rui Han
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongsheng Che
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Key Lab of Animal Production & Product Quality, and Security, Ministry of Education, Jilin Provincial Swine Industry Technical Innovation Center, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
5
|
Pan L, Liu Y, Lan H, Bao N, Zhao Y, Sun H, Qin G, Farouk MH. Biological Mechanisms Induced by Soybean Agglutinin Using an Intestinal Cell Model of Monogastric Animals. Front Vet Sci 2021; 8:639792. [PMID: 34150879 PMCID: PMC8207199 DOI: 10.3389/fvets.2021.639792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/30/2021] [Indexed: 11/30/2022] Open
Abstract
Soybean agglutinin (SBA) has a toxic effect on most animals. The anti-nutritional mechanisms of SBA are not fully understood, in terms of cell survival activity and metabolism of intestinal cells. This study aims to investigate the effects of SBA on the cell cycle, apoptosis, and to verify the mechanism of SBA anti-nutritional characters based on proteomic-based analysis. The IPEC-J2 cell line was cultured with medium containing 0.0, 0.5, or 2.0 mg/mL SBA. With increasing SBA levels, the percentage of the cells at G0/G1 phase, cell apoptosis rates, expressions of Bax and p21, and the activities of Casp-3 and Casp-9 were increased, while cyclin D1 and Bcl-2 expressions were declined (p < 0.05). The proteomic analysis showed that the numbers of differentially expressed proteins, induced by SBA, were mainly enriched in different pathways including DNA replication, base excision repair, nucleus excision repair, mismatch repair, amide and peptide biosynthesis, ubiquitin-mediated proteolysis, as well as structures and functions of mitochondria and ribosome. In conclusion, the anti-nutritional mechanism of SBA is a complex cellular process. Such process including DNA related activities; protein synthesis and metabolism; signal-conducting relation; as well as subcellular structure and function. This study provides comprehensive information to understand the toxic mechanism of SBA in monogastrics.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yan Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hainan Lan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hui Sun
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
6
|
Basson AR, Ahmed S, Almutairi R, Seo B, Cominelli F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods 2021; 10:foods10040774. [PMID: 33916612 PMCID: PMC8066255 DOI: 10.3390/foods10040774] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Environmental factors, particularly diet, are considered central to the pathogenesis of the inflammatory bowel diseases (IBD), Crohn’s disease and ulcerative colitis. In particular, the Westernization of diet, characterized by high intake of animal protein, saturated fat, and refined carbohydrates, has been shown to contribute to the development and progression of IBD. During the last decade, soybean, as well as soy-derived bioactive compounds (e.g., isoflavones, phytosterols, Bowman-Birk inhibitors) have been increasingly investigated because of their anti-inflammatory properties in animal models of IBD. Herein we provide a scoping review of the most studied disease mechanisms associated with disease induction and progression in IBD rodent models after feeding of either the whole food or a bioactive present in soybean.
Collapse
Affiliation(s)
- Abigail Raffner Basson
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
- Correspondence:
| | - Saleh Ahmed
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Rawan Almutairi
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Brian Seo
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| | - Fabio Cominelli
- Division of Gastroenterology & Liver Diseases, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
- Digestive Health Research Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; (S.A.); (B.S.)
| |
Collapse
|
7
|
Airway epithelial integrin β4 suppresses allergic inflammation by decreasing CCL17 production. Clin Sci (Lond) 2021; 134:1735-1749. [PMID: 32608482 DOI: 10.1042/cs20191188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
Airway epithelial cells (AECs) play a key role in asthma susceptibility and severity. Integrin β4 (ITGB4) is a structural adhesion molecule that is down-regulated in the airway epithelium of asthma patients. Although a few studies hint toward the role of ITGB4 in asthmatic inflammation pathogenesis, their specific resultant effects remain unexplored. In the present study, we determined the role of ITGB4 of AECs in the regulation of Th2 response and identified the underpinning molecular mechanisms. We found that ITGB4 deficiency led to exaggerated lung inflammation and AHR with higher production of CCL17 in house dust mite (HDM)-treated mice. ITGB4 regulated CCL17 production in AECs through EGFR, ERK and NF-κB pathways. EFGR-antagonist treatment or the neutralization of CCL17 both inhibited exaggerated pathological marks in HDM-challenged ITGB4-deficient mice. Together, these results demonstrated the involvement of ITGB4 deficiency in the development of Th2 responses of allergic asthma by down-regulation of EGFR and CCL17 pathway in AECs.
Collapse
|
8
|
Tang S, Du X, Yuan L, Xiao G, Wu M, Wang L, Wu S, Duan Z, Xiang Y, Qu X, Liu H, Zou Y, Qin X, Qin L, Liu C. Airway epithelial ITGB4 deficiency in early life mediates pulmonary spontaneous inflammation and enhanced allergic immune response. J Cell Mol Med 2020; 24:2761-2771. [PMID: 31970850 PMCID: PMC7077534 DOI: 10.1111/jcmm.15000] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 12/13/2019] [Accepted: 12/27/2019] [Indexed: 12/22/2022] Open
Abstract
Lung immune responses to respiratory pathogens and allergens are initiated in early life which will further influence the later onset of asthma. The airway epithelia form the first mechanical physical barrier to allergic stimuli and environmental pollutants, which is also the key regulator in the initiation and development of lung immune response. However, the epithelial regulation mechanisms of early-life lung immune responses are far from clear. Our previous study found that integrin β4 (ITGB4) is decreased in the airway epithelium of asthma patients with specific variant site. ITGB4 deficiency in adult mice aggravated the lung Th2 immune responses and enhanced airway hyper-responsiveness (AHR) with a house dust mite (HDM)-induced asthma model. However, the contribution of ITGB4 to the postnatal lung immune response is still obscure. Here, we further demonstrated that ITGB4 deficiency following birth mediates spontaneous lung inflammation with ILC2 activation and increased infiltration of eosinophils and lymphocytes. Moreover, ITGB4 deficiency regulated thymic stromal lymphopoietin (TSLP) production in airway epithelial cells through EGFR pathways. Neutralization of TSLP inhibited the spontaneous inflammation significantly in ITGB4-deficient mice. Furthermore, we also found that ITGB4 deficiency led to exaggerated lung allergic inflammation response to HDM stress. In all, these findings indicate that ITGB4 deficiency in early life causes spontaneous lung inflammation and induces exaggerated lung inflammation response to HDM aeroallergen.
Collapse
Affiliation(s)
- Sha Tang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Reproductive and Genetic Hospital of Citic-Xiangya, Changsha, China
| | - Xizi Du
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Lin Yuan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Gelei Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Mengping Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Leyuan Wang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - ShuangYan Wu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Zhen Duan
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yang Xiang
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiangping Qu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Huijun Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Yizhou Zou
- Department of Immunology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Xiaoqun Qin
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China
| | - Ling Qin
- Department of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Chi Liu
- Department of Physiology, School of Basic Medicine Science, Central South University, Changsha, China.,Research Center of China-Africa Infectious Diseases, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
9
|
Zhao B, Che D, Adams S, Guo N, Han R, Zhang C, Qin G, Farouk MH, Jiang H. N-Acetyl-d-galactosamine prevents soya bean agglutinin-induced intestinal barrier dysfunction in intestinal porcine epithelial cells. J Anim Physiol Anim Nutr (Berl) 2019; 103:1198-1206. [PMID: 30934149 DOI: 10.1111/jpn.13091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/23/2022]
Abstract
Soya bean agglutinin (SBA) is a glycoprotein and the main anti-nutritional component in most soya bean feedstuffs. It is mainly a non-fibre carbohydrate-based protein and represents about 10% of soya bean-based anti-nutritional effects. In this study, we sought to determine the effects of N-Acetyl-D-galactosamine (GalNAc or D-GalNAc) on the damage induced by SBA on the membrane permeability and tight junction proteins of piglet intestinal epithelium (IPEC-J2) cells. The IPEC-J2 cells were pre-cultured with 0, 0.125 × 10-4 , 0.25 × 10-4 , 0.5 × 10-4 , 1.0 × 10-4 and 2.0 × 10-4 mmol/L GalNAc at different time period (1, 2, 4 and 8 hr) before being exposed to 0.5 mg/ml SBA for 24 hr. The results indicate that pre-incubation with GalNAc mitigates the mechanical barrier injury as reflected by a significant increase in trans-epithelial electric resistance (TEER) value and a decrease in alkaline phosphatase (ALP) activity in cell culture medium pre-treated with GalNAc before incubation with SBA as both indicate a reduction in cellular membrane permeability. In addition, mRNA levels of the tight junction proteins occludin and claudin-3 were lower in the SBA-treated groups without pre-treatment with GalNAc. The mRNA expression of occludin was reduced by 17.3% and claudin-3 by 42% (p < 0.01). Moreover, the corresponding protein expression levels were lowered by 17.8% and 43.5% (p < 0.05) respectively. However, in the GalNAc pre-treated groups, occludin and claudin-3 mRNAs were reduced by 1.6% (p > 0.05) and 2.7% (p < 0.01), respectively, while the corresponding proteins were reduced by 4.3% and 7.2% (p < 0.05). In conclusion, GalNAc may prevent the effect of SBA on membrane permeability and tight junction proteins on IPEC-J2s.
Collapse
Affiliation(s)
- Bao Zhao
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Dongsheng Che
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Seidu Adams
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Nan Guo
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- Department of Animal Science and Technology, Changchun University of science and technology, Changchun, China
| | - Guixin Qin
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Mohammed Hamdy Farouk
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Hailong Jiang
- Jilin Provincial Key Laboratory of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China
- Department of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
10
|
Che D, Zhao B, Fan Y, Han R, Zhang C, Qin G, Adams S, Jiang H. Eleutheroside B increase tight junction proteins and anti-inflammatory cytokines expression in intestinal porcine jejunum epithelial cells (IPEC-J2). J Anim Physiol Anim Nutr (Berl) 2019; 103:1174-1184. [PMID: 30990939 DOI: 10.1111/jpn.13087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/11/2019] [Accepted: 02/20/2019] [Indexed: 12/23/2022]
Abstract
Eleutheroside B (EB) is a phenylpropanoid glycoside with anti-inflammatory properties, neuroprotective abilities, immunomodulatory effects, antinociceptive effects, and regulation of blood glucose. The aim of this study was to investigate the effects of EB on the barrier function in the intestinal porcine epithelial cells J2 (IPEC-J2). The IPEC-J2 cells were inoculated into 96-well plates at a density of 5 × 103 cells per well for 100% confluence. The cells were cultured in the presence of EB at concentrations of 0, 0.05, 0.10, and 0.20 mg/ml for 48 hr. Then, 0.10 mg/ml was selected as the suitable concentration for the estimation of transepithelial electric resistance (TEER) value, alkaline phosphatase activity, proinflammatory cytokines mRNA expression, tight junction mRNA and protein expression. The results of this study indicated that the supplementation of EB in IPEC-J2 cells decreased cellular membrane permeability and mRNA expression of proinflammatory cytokines, including interleukin-6 (IL-6), interferon-γ (INF-γ), and tumour necrosis factor-α (TNF-α). The supplementation of EB in IPEC-J2 cells increased tight junction protein expression and anti-inflammatory cytokines, interleukin 10 (IL-10) and transforming growth factor beta (TGF-β). In addition, the western blotting and real-time quantitative polymerase chain reaction (RT-qPCR) results indicated that EB significantly (p < 0.05) increased the mRNA and protein expression of intestinal tight junction proteins, Claudin-3, Occludin, and Zonula Occludins protein-1 (ZO-1). Therefore, dietary supplementation of EB may increase intestinal barrier function, tight junction protein expression, anti-inflammatory cytokines, and decrease proinflammatory cytokines synthesis in IPEC-J2 cells.
Collapse
Affiliation(s)
- Dongsheng Che
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Bao Zhao
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Yueli Fan
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Rui Han
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Chun Zhang
- College of Animal Science and Technology, Changchun University of Science and Technology, Changchun, China
| | - Guixin Qin
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Seidu Adams
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Hailong Jiang
- Jilin Provincial Key Lab of Animal Nutrition and Feed Science, Jilin Agricultural University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Waldrop SG, Sriranganathan N. Intracellular invasion and survival of Brucella neotomae, another possible zoonotic Brucella species. PLoS One 2019; 14:e0213601. [PMID: 30943213 PMCID: PMC6447175 DOI: 10.1371/journal.pone.0213601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/25/2019] [Indexed: 12/17/2022] Open
Abstract
In 1967, Brucella neotomae was first isolated from Neotoma lepida, the dessert wood rat, in Utah. With little infection data since its discovery, the zoonotic potential of this Brucella species is largely unknown. Recent reports of isolation from human cerebrospinal fluid, along with current literature suggest that B. neotomae has the ability to infect various hosts and cell types. In this report we extend the knowledge of B. neotomae ATCC 23459’s intracellular invasion and survival abilities to a variety of cell lines through gentamicin protection assays. Some of the phagocytic and epithelial cell lines from various mammalian species represent characteristics of some cell types that could be encountered by Brucella in potential hosts. It was found that B. neotomae ATCC 23459 exhibits generally lower intracellular bacterial CFUs compared to the mouse-passaged strain of B. neotomae ATCC 23459, B. suis 1330, and B. abortus 2308. Ultimately, these observations provide a small piece of the puzzle in the investigation of the breadth of B. neotomae’s pathogenic potential.
Collapse
Affiliation(s)
- Steven Grant Waldrop
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, United States of America
- * E-mail:
| |
Collapse
|
12
|
Yin YB, Guo SG, Wan D, Wu X, Yin YL. Enteroids: Promising in Vitro Models for Studies of Intestinal Physiology and Nutrition in Farm Animals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:2421-2428. [PMID: 30739438 DOI: 10.1021/acs.jafc.8b06908] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The lack of sophisticated in vitro models limits our current understanding of gastrointestinal functions in farm animals. Conventional 2D cell lines or primary cells fail to recapitulate the physiology of in vivo intestinal epithelium. In contrast stem cell-derived, nontransformed 3D enteroids partially recreate the villus-crypt anatomy of the native intestine and comprise most if not all intestinal cell types including enterocytes, enteroendocrine cells, goblet cells, Paneth cells, and stem cells. This review summarizes the techniques used for generating and culturing enteroids of various farm animal species, focuses on important factors influencing the longevity of enteroids, and provides an overview of their current applications in modeling veterinary pathogens and in developing chemicals and bioactives for treating animal disease and improving production performance. It also mentions current limitations of enteroid models and potential solutions and highlights the opportunities for using these enteroids as a platform in studies regarding veterinary sciences and animal nutrition.
Collapse
Affiliation(s)
- Yue-Bang Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process , Changsha , Hunan 410125 , China
- Department of Gastroenterology and Hepatology , Erasmus MC University Medical Center , 3015 GD Rotterdam , The Netherlands
| | - Song-Ge Guo
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process , Changsha , Hunan 410125 , China
- College of Bioscience and Biotechnology , Hunan Agricultural University , Changsha , Hunan 410128 , China
| | - Dan Wan
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process , Changsha , Hunan 410125 , China
| | - Xin Wu
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process , Changsha , Hunan 410125 , China
| | - Yu-Long Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture Chinese Academy of Sciences, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture , Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process , Changsha , Hunan 410125 , China
| |
Collapse
|
13
|
Wang K, Liu C, Hou Y, Zhou H, Wang X, Mai K, He G. Differential Apoptotic and Mitogenic Effects of Lectins in Zebrafish. Front Endocrinol (Lausanne) 2019; 10:356. [PMID: 31231312 PMCID: PMC6560201 DOI: 10.3389/fendo.2019.00356] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/20/2019] [Indexed: 01/06/2023] Open
Abstract
Plant lectins represent a major group of anti-nutritional factors that can be toxic to human and animals. However, the mechanisms by which lectins regulate cell fates are not well-understood. In the present study, the cellular and molecular impacts of three common lectins, agglutinins from wheat germ [wheat germ agglutinin (WGA)], soybean [soybean agglutinin (SBA)], and peanut [peanut agglutinin (PNA)] were examined in zebrafish embryo and liver cells. WGA and SBA were found to induce cell apoptosis both in vitro and in vivo, while PNA stimulated cell proliferation. WGA and SBA reduced levels of B cell lymphoma-2 (Bcl-2), phosphorylation of Bcl-2-associated death promoter (Bad), cyclin-dependent kinase 4 (Cdk4), and phosphorylation of the retinoblastoma (Rb). WGA and SBA also inhibited the activities of cell survival pathways including protein kinase B (Akt), extracellular signal-regulated protein kinases 1 and 2 (Erk1/2), and target of rapamycin (Tor). Furthermore, WGA and SBA shifted the cellular metabolism characterized by reduced expression of glucose-6-phosphate dehydrogenase (g6pd) and increased expression of glutamine synthetase (glul) and glutamate dehydrogenase (glud). However, PNA showed the opposite effects toward these molecular markers compared to those of WGA and SBA. Therefore, our results revealed some plant lectins (WGA and SBA) were toxic while the other (PNA) was mitogenic. Further characterization of the distinct functions of individual lectins should be valuable for both nutrition and other potential applications.
Collapse
Affiliation(s)
- Kaidi Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Chengdong Liu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Yiying Hou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Huihui Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Xuan Wang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Kangsen Mai
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Gen He
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Gen He
| |
Collapse
|
14
|
Sugawara K, Kadoya T, Kuramitz H. Magnetic beads modified with an electron-transfer carbohydrate-mimetic peptide for sensing of a galactose-dependent protein. Anal Chim Acta 2018; 1001:158-167. [PMID: 29291799 DOI: 10.1016/j.aca.2017.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/10/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022]
Abstract
For use in the voltammetric sensing of galactose-dependent proteins, we modified magnetic beads with a peptide that had both electroactive- and molecular recognition properties. The peptide consisted of a YXY sequence and behaved as an electron-transfer carbohydrate-mimetic peptide that would combine with proteins. With this tool, the protein could be detected via a label-free system. We synthesized several penta- and hexa-peptides with a cysteine residue on the C-terminals to examine the properties of peptides. These peptides contained amino acid residues (X) of alanine, serine, or tyrosine. The peptides were immobilized on magnetic beads via N-(8-maleimidocapryloxy) succinimide. Soybean agglutinin(SBA), the in vivo function of which has been well established in animals, was selected as a model protein. The protein was detected via the changes in electrode response due to the oxidation of tyrosine residues from the phenol group to quinone. As a result, SBA was selectively accumulated on the beads modified with YYYYC. The calibration curve of SBA was linear and ranged from 2.5 × 10-12 to 1.0 × 10-10 M. With this system, SBA was recovered in human serum at values that ranged from 98 to 103%. Furthermore, the beads with peptides were regenerated five times using a protein denaturant. Accordingly, this electrochemical system was simple and could be rapidly applied to the detection of galactose-recognition proteins.
Collapse
Affiliation(s)
| | | | - Hideki Kuramitz
- Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
15
|
Pan L, Zhao Y, Farouk MH, Bao N, Wang T, Qin G. Integrins Were Involved in Soybean Agglutinin Induced Cell Apoptosis in IPEC-J2. Int J Mol Sci 2018; 19:E587. [PMID: 29462933 PMCID: PMC5855809 DOI: 10.3390/ijms19020587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/02/2018] [Accepted: 02/09/2018] [Indexed: 12/30/2022] Open
Abstract
Soybean agglutinin (SBA), is a non-fiber carbohydrate related protein and a major anti-nutritional factor. Integrins, transmembrane glycoproteins, are involved in many biological processes. Although recent work suggested that integrins are involved in SBA-induced cell-cycle alterations, no comprehensive study has reported whether integrins are involved in SBA-induced cell apoptosis (SCA) in IPEC-J2. The relationship between SBA and integrins are still unclear. We aimed to elucidate the effects of SBA on IPEC-J2 cell proliferation and cell apoptosis; to study the roles of integrins in IPEC-J2 normal cell apoptosis (NCA) and SCA; and to illustrate the relationship and connection type between SBA and integrins. Thus, IPEC-J2 cells were treated with SBA at the levels of 0, 0.125, 0.25, 0.5, 1.0 or 2.0 mg/mL to determine cell proliferation and cell apoptosis. The cells were divided into control, SBA treated groups, integrin inhibitor groups, and SBA + integrin inhibitor groups to determine the integrin function in SCA. The results showed that SBA significantly (p < 0.05) lowered cell proliferation and induced cell apoptosis in IPEC-J2 (p < 0.05). Inhibition of any integrin type induced the cell apoptosis (p < 0.05) and these integrins were involved in SCA (p < 0.05). Even SBA had no physical connection with integrins, an association was detected between SBA and α-actinin-2 ACTN2 (integrin-binding protein). Additionally, SBA reduced the mRNA expression of integrins by down regulating the gene expression level of ACTN2. We concluded an evidence for the anti-nutritional mechanism of SBA by ACTN2 with integrins. Further trials are needed to prove whether ACTN2 is the only protein for connecting SBA with integrin.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Mohamed Hamdy Farouk
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Tao Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|
16
|
Pan L, Farouk MH, Qin G, Zhao Y, Bao N. The Influences of Soybean Agglutinin and Functional Oligosaccharides on the Intestinal Tract of Monogastric Animals. Int J Mol Sci 2018; 19:E554. [PMID: 29439523 PMCID: PMC5855776 DOI: 10.3390/ijms19020554] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 12/21/2022] Open
Abstract
Soybean agglutinin (SBA) is a non-fiber carbohydrate-related protein and the main anti-nutritional factor that exists in soybean or soybean products. SBA possesses a specific binding affinity for N-glyphthalide-d-galactosamine or galactose and has a covalently linked oligosaccharide chain. SBA mediates negative effects on animal intestinal health by influencing the intestinal structure, barrier function, mucosal immune system, and the balance of the intestinal flora. Functional oligosaccharides are non-digestible dietary oligosaccharides that are commonly applied as prebiotics since the biological effects of the functional oligosaccharides are to increase the host health by improving mucosal structure and function, protecting the integrity of the intestinal structure, modulating immunity, and balancing the gastrointestinal microbiota. The purpose of this review is to describe the structure and anti-nutritional functions of SBA, summarize the influence of SBA and functional oligosaccharides on the intestinal tract of monogastric animals, and emphasize the relationship between SBA and oligosaccharides. This review provides perspectives on applying functional oligosaccharides for alleviating the anti-nutritional effects of SBA on the intestinal tract.
Collapse
Affiliation(s)
- Li Pan
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Mohammed Hamdy Farouk
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
- Animal Production Department, Faculty of Agriculture, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - Guixin Qin
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Yuan Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| | - Nan Bao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Key Laboratory of Animal Nutrition and Feed Science, Jilin Province, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China.
| |
Collapse
|