1
|
Nagy RN, Makkos A, Baranyai T, Giricz Z, Szabó M, Kravcsenko-Kiss B, Bereczki Z, Ágg B, Puskás LG, Faragó N, Schulz R, Gyöngyösi M, Lukovic D, Varga ZV, Görbe A, Ferdinandy P. Cardioprotective microRNAs (protectomiRs) in a pig model of acute myocardial infarction and cardioprotection by ischaemic conditioning: MiR-450a. Br J Pharmacol 2025; 182:396-416. [PMID: 39294819 DOI: 10.1111/bph.17313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND AND PURPOSE Cardioprotective miRNAs (protectomiRs) are promising therapeutic tools. Here, we aimed to identify protectomiRs in a translational porcine model of acute myocardial infarction (AMI) and to validate their cardiocytoprotective effect. EXPERIMENTAL APPROACH ProtectomiR candidates were selected after systematic analysis of miRNA expression changes in cardiac tissue samples from a closed-chest AMI model in pigs subjected to sham operation, AMI and ischaemic preconditioning, postconditioning or remote preconditioning, respectively. Cross-species orthologue protectomiR candidates were validated in simulated ischaemia-reperfusion injury (sI/R) model of isolated rat ocardiomyocytes and in human AC16 cells as well. For miR-450a, we performed target prediction and analysed the potential mechanisms of action by GO enrichment and KEGG pathway analysis. KEY RESULTS Out of the 220 detected miRNAs, four were up-regulated and 10 were down-regulated due to all three conditionings versus AMI. MiR-450a and miR-451 mimics at 25 nM were protective in rat cardiomyocytes, and miR-450a showed protection in human cardiomyocytes as well. MiR-450a has 3987 predicted mRNA targets in pigs, 4279 in rats and 8328 in humans. Of these, 607 genes are expressed in all three species. A total of 421 common enriched GO terms were identified in all three species, whereas KEGG pathway analysis revealed 13 common pathways. CONCLUSION AND IMPLICATIONS This is the first demonstration that miR-450a is associated with cardioprotection by ischaemic conditioning in a clinically relevant porcine model and shows cardiocytoprotective effect in human cardiomyocytes, making it a promising drug candidate. The mechanism of action of miR-450a involves multiple cardioprotective pathways. LINKED ARTICLES This article is part of a themed issue Non-coding RNA Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.2/issuetoc.
Collapse
Grants
- OTKA ANN 107803 Hungarian Scientific Research Fund
- OTKA K-105555 Hungarian Scientific Research Fund
- 2018-1.3.1-VKE-2018-00024 National Research, Development and Innovation Office
- NVKP-16-1-2016-0017 National Heart Program National Research, Development and Innovation Office
- OTKA-FK 134751 National Research, Development and Innovation Office
- TKP/ITM/NFKIH National Research, Development and Innovation Office
- OTKAK21-139105 National Research, Development and Innovation Office
- RRF-2.3.1-21-2022-00003 European Union
- EU COST Action CardioRNA.eu, Cardioprotection.eu
- 88öu1 Austrian-Hungarian Action Scholarship
- 739593 European Union's Horizon 2020
- 2019-1.1.1-PIACI-KFI-2019-00367 National Research, Development and Innovation Fund
- 2020-1.1.5-GYORSÍTÓSÁV-2021-00011 National Research, Development and Innovation Fund
- ÚNKP-20-5 National Research, Development and Innovation Fund
- ÚNKP-23-4-II-SE-34 National Research, Development and Innovation Fund
- János Bolyai Research Scholarship of Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Regina N Nagy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - András Makkos
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Tamás Baranyai
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Giricz
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Márta Szabó
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bernadett Kravcsenko-Kiss
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán Bereczki
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Bence Ágg
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - László G Puskás
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Nóra Faragó
- Laboratory of Functional Genomics, Biological Research Centre, Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig University of Giessen, Giessen, Germany
| | - Mariann Gyöngyösi
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dominika Lukovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Zoltán V Varga
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, Budapest, Hungary
| | - Anikó Görbe
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and HUN-REN-SU System Pharmacology Research Group, Center for Pharmacology and Drug Research & Development, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
- Pharmahungary Group, Szeged, Hungary
| |
Collapse
|
2
|
Liu W, Liang W, Zhang C, Liu H, Li H, Zhou L, Zhou L. LncR-GAS5 decrease in adenine phosphoribosyltransferase expresssion via binding TAF1 to increase kidney damage created by CIH. Heliyon 2024; 10:e33084. [PMID: 38994083 PMCID: PMC11238052 DOI: 10.1016/j.heliyon.2024.e33084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Objective Chronic kidney disease (CKD) related to obstructive sleep apnea-hypopnea syndrome (OSAHS) mainly results from chronic intermittent hypoxia (CIH)-induced renal injury. This study aimed to explore the interaction between the long noncoding RNA (lncRNA) growth arrest-specific transcript 5 (GAS5) and recombinant adenine phosphoribosyltransferase (APRT) in CIH-induced renal injury. Methods A rat intermittent hypoxia model was constructed, total RNA was extracted from kidney tissue, and transcriptome sequencing was performed using high-throughput sequencing technology. CIH rat models were established and injected with sh-GAS5 or OE-APRT plasmid, the serum levels of blood urea nitrogen (BUN) and creatinine amidohydrolase were measured, and the expression of oxidative stress-related factors was detected. Hematoxylin and eosin (H&E) and Masson's trichrome staining were used for morphological observations, and cell apoptosis was determined by TUNEL staining. Interactions between GAS5, TATA-box binding protein-associated factor 1 (TAF1), and APRT were predicted and verified. After transfection of HK-2 cells, the expression of GAS5, TAF1, APRT, Bax, Bcl-2, apoptosis-related factors, fibrosis-related factors (collagen I and Ⅳ), and autophagy-related proteins (LC3-Ⅱ, LC3-Ⅰ, p62, and Beclin-1) was measured by RT-qPCR and western blotting. Results Sequencing results revealed that TAF1 was significantly increased and APRT was significantly decreased in the CIH group. RNA was significantly involved in the biological process of kidney injury mediated by CIH. CIH rats injected with GAS5 suppression or APRT overexpression plasmids showed decreased GAS5 and elevated APRT expression, along with suppressed serum levels of BUN and creatinine amidohydrolase. Meanwhile, GAS5 suppression or APRT overexpression attenuated apoptosis and fibrosis, suppressed oxidative stress, and promoted autophagy in CIH-induced renal tubular epithelial cells. The RNA pull-down assay and RIP verified the binding and interaction of GAS5 and TAF1. Chip immunoprecipitation (ChIP) identified TAF1 regulation of the APRT promoter. GAS5 and TAF1 negatively regulated APRT expression. Conclusion The lncRNA GAS5 can bind TAF1 to suppress APRT transcription, thereby enhancing CIH-induced renal injury in rats.
Collapse
Affiliation(s)
- Wei Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Wukaiyang Liang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - CunTai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Huiguo Liu
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hai Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Lun Zhou
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Ling Zhou
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
3
|
Ren Y, Zhao X. Bone marrow mesenchymal stem cells-derived exosomal lncRNA GAS5 mitigates heart failure by inhibiting UL3/Hippo pathway-mediated ferroptosis. Eur J Med Res 2024; 29:303. [PMID: 38812041 PMCID: PMC11137962 DOI: 10.1186/s40001-024-01880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Exosomes (Exos) are involved in the therapeutic effects of bone marrow mesenchymal stem cells (BMSCs) on heart failure (HF). We investigated the molecular mechanisms underlying the involvement of BMSC-Exos in ferroptosis on HF. METHODS A rat model of HF and cellular model of hypoxia were established. BMSC-Exos were injected into model rats or co-cultured with model cells. In model rats, the cardiac function (echocardiography), oxidative stress (commercial kits), pathological damage (HE staining), fibrosis (MASSON staining), iron deposition (Prussian blue staining), and cell apoptosis (TUNEL staining) were examined. Viability (cell counting kit-8; CCK-8), cell cycle (flow cytometry), oxidative stress, and Fe2+ levels were detected in the model cells. GAS5, UL3, YAP, and TAZ expression were detected using qRT-PCR, western blotting, and immunohistochemistry analyses. RESULTS BMSC-Exos restored cardiac function and inhibited oxidative stress, apoptosis, pathological damage, fibrosis, and iron deposition in myocardial tissues of HF rats. In hypoxic cells, BMSC-Exos increased cell viability, decreased the number of G1 phase cells, decreased Fe2+ levels, and inhibited oxidative stress. Ferrostatin-1 (a ferroptosis inhibitor) exhibited a synergistic effect with BMSC-Exos. Additionally, GAS5 was upregulated in BMSC-Exos, further upregulating its target UL3 and Hippo pathway effectors (YAP and TAZ). The relieving effects of BMSC-Exos on HF or hypoxia-induced injury were enhanced by GAS5 overexpression, but weakened by UL3 silencing or verteporfin (a YAP inhibitor). CONCLUSIONS GAS5-harbouring BMSC-Exos inhibited ferroptosis by regulating the UL3/Hippo pathway, contributing to HF remission in vivo and in vitro.
Collapse
Affiliation(s)
- Yu Ren
- Department of Scientific Research, Inner Mongolia People's Hospital, Hohhot, 010017, China
| | - Xingsheng Zhao
- Department of Cardiology, Inner Mongolia People's Hospital, No.20 Zhao Wuda Road, Hohhot, 010017, China.
| |
Collapse
|
4
|
Islam S, Mukherjee C. Molecular regulation of hypoxia through the lenses of noncoding RNAs and epitranscriptome. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1750. [PMID: 35785444 DOI: 10.1002/wrna.1750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/27/2022] [Accepted: 06/06/2022] [Indexed: 11/09/2022]
Abstract
Cells maintain homeostasis in response to environmental stress through specific cell stress responses. Hypoxic stress, well known to be associated with diverse solid tumors, is one of the main reasons for cancer-related mortality. Although cells can balance themselves well during hypoxic stress, the underlying molecular mechanisms are not well understood. The enhanced appreciation of diverse roles played by noncoding transcriptome and epigenome in recent years has brought to light the involvement of noncoding RNAs and epigenetic modifiers in hypoxic regulation. The emergence of techniques like deep sequencing has facilitated the identification of large numbers of long noncoding RNAs (lncRNAs) that are differentially regulated in various cancers. Similarly, proteomic studies have identified diverse epigenetic modifiers such as HATs, HDACs, DNMTs, polycomb groups of proteins, and their possible roles in the regulation of hypoxia. The crosstalk between lncRNAs and epigenetic modifiers play a pivotal role in hypoxia-induced cancer initiation and progression. Besides the lncRNAs, several other noncoding RNAs like circular RNAs, miRNAs, and so forth are also expressed during hypoxic conditions. Hypoxia has a profound effect on the expression of noncoding RNAs and epigenetic modifiers. Conversely, noncoding RNAs/epigenetic modifies can regulate the hypoxia signaling axis by modulating the stability of the hypoxia-inducible factors (HIFs). The focus of this review is to illustrate the molecular orchestration underlying hypoxia biology, especially in cancers, which can help in identifying promising therapeutic targets in hypoxia-induced cancers. This article is categorized under: RNA Turnover and Surveillance > Regulation of RNA Stability RNA in Disease and Development > RNA in Disease RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry.
Collapse
Affiliation(s)
- Safirul Islam
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| | - Chandrama Mukherjee
- Institute of Health Sciences (erstwhile School of Biotechnology), Presidency University, Kolkata, India
| |
Collapse
|
5
|
Loganathan T, Doss C GP. Non-coding RNAs in human health and disease: potential function as biomarkers and therapeutic targets. Funct Integr Genomics 2023; 23:33. [PMID: 36625940 PMCID: PMC9838419 DOI: 10.1007/s10142-022-00947-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 01/11/2023]
Abstract
Human diseases have been a critical threat from the beginning of human history. Knowing the origin, course of action and treatment of any disease state is essential. A microscopic approach to the molecular field is a more coherent and accurate way to explore the mechanism, progression, and therapy with the introduction and evolution of technology than a macroscopic approach. Non-coding RNAs (ncRNAs) play increasingly important roles in detecting, developing, and treating all abnormalities related to physiology, pathology, genetics, epigenetics, cancer, and developmental diseases. Noncoding RNAs are becoming increasingly crucial as powerful, multipurpose regulators of all biological processes. Parallel to this, a rising amount of scientific information has revealed links between abnormal noncoding RNA expression and human disorders. Numerous non-coding transcripts with unknown functions have been found in addition to advancements in RNA-sequencing methods. Non-coding linear RNAs come in a variety of forms, including circular RNAs with a continuous closed loop (circRNA), long non-coding RNAs (lncRNA), and microRNAs (miRNA). This comprises specific information on their biogenesis, mode of action, physiological function, and significance concerning disease (such as cancer or cardiovascular diseases and others). This study review focuses on non-coding RNA as specific biomarkers and novel therapeutic targets.
Collapse
Affiliation(s)
- Tamizhini Loganathan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India
| | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore- 632014, Tamil Nadu, India.
| |
Collapse
|
6
|
Ward Z, Schmeier S, Pearson J, Cameron VA, Frampton CM, Troughton RW, Doughty RN, Richards AM, Pilbrow AP. Identifying Candidate Circulating RNA Markers for Coronary Artery Disease by Deep RNA-Sequencing in Human Plasma. Cells 2022; 11:3191. [PMID: 36291058 PMCID: PMC9599983 DOI: 10.3390/cells11203191] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2023] Open
Abstract
Advances in RNA sequencing (RNA-Seq) have facilitated transcriptomic analysis of plasma for the discovery of new diagnostic and prognostic markers for disease. We aimed to develop a short-read RNA-Seq protocol to detect mRNAs, long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in plasma for the discovery of novel markers for coronary artery disease (CAD) and heart failure (HF). Circulating cell-free RNA from 59 patients with stable CAD (half of whom developed HF within 3 years) and 30 controls was sequenced to a median depth of 108 paired reads per sample. We identified fragments from 3986 messenger RNAs (mRNAs), 164 long non-coding RNAs (lncRNAs), 405 putative novel lncRNAs and 227 circular RNAs in plasma. Circulating levels of 160 mRNAs, 10 lncRNAs and 2 putative novel lncRNAs were altered in patients compared with controls (absolute fold change >1.2, p < 0.01 adjusted for multiple comparisons). The most differentially abundant transcripts were enriched in mRNAs encoded by the mitochondrial genome. We did not detect any differences in the plasma RNA profile between patients who developed HF compared with those who did not. In summary, we show that mRNAs, lncRNAs and circular RNAs can be reliably detected in plasma by deep RNA-Seq. Multiple coding and non-coding transcripts were altered in association with CAD, including several mitochondrial mRNAs, which may indicate underlying myocardial ischaemia and oxidative stress. If validated, circulating levels of these transcripts could potentially be used to help identify asymptomatic individuals with established CAD prior to an acute coronary event.
Collapse
Affiliation(s)
- Zoe Ward
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Sebastian Schmeier
- School of Natural and Computational Sciences, Massey University, Auckland 0632, New Zealand
- Evotec SE, Essener Bogen 7, 22419 Hamburg, Germany
| | - John Pearson
- Biostatistics and Computational Biology Unit, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Vicky A Cameron
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Chris M Frampton
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Richard W Troughton
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| | - Rob N Doughty
- Heart Health Research Group, University of Auckland, Auckland 1023, New Zealand
| | - A. Mark Richards
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
- Cardiovascular Research Institute, National University of Singapore, Singapore 119228, Singapore
| | - Anna P Pilbrow
- Christchurch Heart Institute, Department of Medicine, University of Otago—Christchurch, Christchurch 8140, New Zealand
| |
Collapse
|
7
|
Xie L, Huang G, Gao M, Huang J, Li H, Xia H, Xiang X, Wu S, Ruan Y. Identification of Atrial Fibrillation-Related lncRNA Based on Bioinformatic Analysis. DISEASE MARKERS 2022; 2022:8307975. [PMID: 35154514 PMCID: PMC8837454 DOI: 10.1155/2022/8307975] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) is the most common arrhythmia in the world. Long noncoding RNA (lncRNA) has been found to play an important role in cardiovascular diseases including heart failure, myocardial infarction, and atherosclerosis. However, the role of lncRNA in AF has rarely been studied. The purpose of this study is to identify the expression profile of lncRNA in AF patients, explore the function of lncRNA in AF, and provide a potential scientific basis for the treatment of AF in the future. METHODS The lncRNA and mRNA expression profiles were obtained from the atrial appendage samples of GSE31821, GSE411774, GSE79768, and GSE115574 in the Gene Expression Omnibus (GEO) database. Functional analysis was performed via Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Variation Analysis (GSVA). The "CIBERSORT" R kit was used to analyze 22 immune cell infiltrates in AF and sinus rhythm (SR) patients. The "CORRPLOT" R package was used to analyze the immune correlation between lncRNA and immune cells. RESULTS A total of 6 differentially expressed lncRNAs and 45 differentially expressed mRNAs were identified in the AF and SR groups. GO, KEGG, and GSVA results showed that abnormally expressed lncRNAs were involved in signaling pathways related to the atrium, including the Toll-like receptor signaling pathway and calcium signaling pathway. Immune cell infiltration analysis revealed that native B cells, follicular helper T cells, and resting dendritic cells may be involved in the AF process. In addition, LINC00844 was negatively correlated with resting dendritic cells. CONCLUSION The expression profile of lncRNA in AF patients was different from that in normal controls. The physiological functions of these differentially expressed lncRNAs may be related to the pathogenesis of AF, which provide a scientific basis for the prognosis and treatment of patients with AF.
Collapse
Affiliation(s)
- Liangzhen Xie
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - GuanShen Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Mingjian Gao
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jianming Huang
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Li
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hao Xia
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiuting Xiang
- Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518000, China
| | - Saizhu Wu
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Ruan
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
8
|
Wu C, Liu B, Wang R, Li G. The Regulation Mechanisms and Clinical Application of MicroRNAs in Myocardial Infarction: A Review of the Recent 5 Years. Front Cardiovasc Med 2022; 8:809580. [PMID: 35111829 PMCID: PMC8801508 DOI: 10.3389/fcvm.2021.809580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/24/2021] [Indexed: 12/21/2022] Open
Abstract
Myocardial infarction (MI) is the most frequent end-point of cardiovascular pathology, leading to higher mortality worldwide. Due to the particularity of the heart tissue, patients who experience ischemic infarction of the heart, still suffered irreversible damage to the heart even if the vascular reflow by treatment, and severe ones can lead to heart failure or even death. In recent years, several studies have shown that microRNAs (miRNAs), playing a regulatory role in damaged hearts, bring light for patients to alleviate MI. In this review, we summarized the effect of miRNAs on MI with some mechanisms, such as apoptosis, autophagy, proliferation, inflammatory; the regulation of miRNAs on cardiac structural changes after MI, including angiogenesis, myocardial remodeling, fibrosis; the application of miRNAs in stem cell therapy and clinical diagnosis; other non-coding RNAs related to miRNAs in MI during the past 5 years.
Collapse
|
9
|
Zhang Y, Liu S, Ding L, Wang D, Li Q, Li D. Circ_0030235 knockdown protects H9c2 cells against OGD/R-induced injury via regulation of miR-526b. PeerJ 2021; 9:e11482. [PMID: 34820154 PMCID: PMC8603820 DOI: 10.7717/peerj.11482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/27/2021] [Indexed: 11/20/2022] Open
Abstract
Backgrounds Acute myocardial infarction (MI) is the common clinical manifestation of coronary heart disease. Circular RNAs (circRNAs) act key roles in cardiomyocytes growth and angiogenesis. However, their functions in MI are not entirely clear. This research intended to investigate the role and underlying mechanisms of circ_0030235 in H9c2 cells. Methods H9c2 cells were conducted to oxygen glucose deprivation/reperfusion (OGD/R) inducement to establish the MI model. Circ_0030235 and miR-526b expression was tested and altered by qRT-PCR and transfection. Cell viability, apoptosis and reactive oxygen species (ROS) injury were tested by CCK-8 assay, TUNEL assay kit, and ROS Detection Assay Kit, respectively. Assessment of cell injury-related factors was performed by employing ELISA, Mitochondrial Viability Staining and the JC-1-Mitochondrial Membrane Potential Assay Kit. The relationship between circ_0030235 and miR-526b was analyzed by dual luciferase reporter assay. The expression of key proteins was analyzed by western blot. Results Circ_0030235 was highly expressed in OGD/R-induced H9c2 cells. OGD/R inducement cell viability, while accelerated apoptosis. Besides, the level ROS, cell injury-related factors, mitochondrial membrane potential were notably elevated by OGD/R inducement, while mitochondrial viability was remarkably declined. Whereas, these impacts were all noticeably remitted by circ_0030235 knockdown. miR-526b was a target of circ_0030235. Circ_0030235 knockdown-induced impacts were all notably abrogated by miR-526b inhibition, including the activating impacts on PI3K/AKT and MEK/ERK pathways. Conclusions This research implied that circ_0030235 knockdown might remit OGD/R-induced impacts via activation of PI3K/AKT and MEK/ERK pathways and regulation of miR-526b.
Collapse
Affiliation(s)
- Yuquan Zhang
- Department of Gerontology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China.,Department of Gerontology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Shuzhu Liu
- Department of Gerontology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China.,Department of Gerontology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Limin Ding
- Department of Gerontology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China.,Department of Gerontology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Dawei Wang
- Department of Gerontology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China.,Department of Gerontology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Qiangqiang Li
- Department of Library, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China.,Department of Library, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| | - Dongdong Li
- Department of Gerontology, The First Hospital of Qiqihar, Qiqihar, Heilongjiang, China.,Department of Gerontology, Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, Heilongjiang, China
| |
Collapse
|
10
|
Lin B, Zheng W, Jiang X. Crosstalk between Circulatory Microenvironment and Vascular Endothelial Cells in Acute Myocardial Infarction. J Inflamm Res 2021; 14:5597-5610. [PMID: 34744446 PMCID: PMC8565985 DOI: 10.2147/jir.s316414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/29/2021] [Indexed: 12/03/2022] Open
Abstract
Background The reason of high mortality of acute myocardial infarction (AMI) was the lack of exploring the cellular and molecular mechanism of AMI. Therefore, we explored the crosstalk among cells, as well as its potential molecular mechanism of mediating AMI. Methods The gene expression profile of peripheral blood, endothelial, platelets and mononuclear cells were applied to differentially expressed genes (DEGs) analysis. ClusterProfiler and the package of gene set enrichment analysis (GSEA) were applied to explore the potential functional pathways of DEGs in 3 types of intravascular cells (endothelial, platelets and mononuclear cells) and peripheral blood. Subsequently, we extracted the surface receptors, secreted proteins and extracellular matrix from the up-regulated DEGs to explore their potential interactions mechanism of AMI by crosstalk and pivot analysis. Findings A total 11 common regulated DEGs (CDEGs) were identified, which might be potential biomarkers for AMI diagnosis. The abnormal pathways involved in DEGs of 3 types of intravascular cells and peripheral blood were shown, which also verified by GSEA. Afterwards, it was found that there was crosstalk in 3 types of intravascular cells and peripheral blood. Furthermore, we constructed a cell–cell interaction map among cells in AMI regulated by exosome lncRNA, which was involved in the development of AMI. Finally, we identified 8 hub genes, which might be potential biomarkers of AMI. Interpretation The result of this study can not only be used as a reference for subsequent experiments and further exploration, but also contribute to the development of novel cell and molecular therapies.
Collapse
Affiliation(s)
- Beiyou Lin
- Department of Cardiology, Zhuhai People's Hospital, (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, People's Republic of China
| | - Weiwei Zheng
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital & Zhengzhou University People's Hospital & Henan University People's Hospital, Zhengzhou, 450003, Henan, People's Republic of China
| | - Xiaofei Jiang
- Department of Cardiology, Zhuhai People's Hospital, (Zhuhai hospital affiliated with Jinan University), Zhuhai, Guangdong, 519000, People's Republic of China
| |
Collapse
|
11
|
Zhu C, Zhang H, Wei D, Sun Z. Silencing lncRNA GAS5 alleviates apoptosis and fibrosis in diabetic cardiomyopathy by targeting miR-26a/b-5p. Acta Diabetol 2021; 58:1491-1501. [PMID: 34091757 DOI: 10.1007/s00592-021-01745-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/11/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND LncRNA GAS5 is associated with high glucose-induced cardiomyocyte injury, but its role in diabetic cardiomyopathy (DCM) remains unclear. METHODS Mice were administered with streptozotocin to construct the diabetic model (DM). Primary mouse cardiomyocytes were isolated and treated with 30 mmol/L high glucose to mimic the diabetic condition in vitro. GAS5 expression was detected by quantitative reverse transcription polymerase chain reaction. The relationship between GAS5 and miR-26a/b-5p was determined by bioinformatic prediction, luciferase reporter assay and RNA immunoprecipitation assay. The cardiac function of diabetic mice was evaluated by two-dimensional echocardiography. RESULTS GAS5 was significantly upregulated in diabetic cardiomyopathy both in vitro and in vivo. GAS5 knockdown and miR-26a/b-5p overexpression not only effectively attenuated myocardial fibrosis of diabetic mice in vivo but also inhibited high glucose-induced cardiomyocyte injury in vitro. miR-26a/b-5p was identified as a target of GAS5. GAS5 knockdown efficiently attenuated myocardial fibrosis and high glucose-induced cardiomyocyte injury through negatively regulating miR-26a/b-p. CONCLUSION Our study showed that GAS5 promotes DCM progression by regulating miR-26a/b-5p, suggesting that GAS5 might be a potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Chunping Zhu
- Department of Cardiac Function, The First Hospital of Qiqihar & Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, People's Republic of China
| | - Haijun Zhang
- The Second Department of Endocrinology, The First Hospital of Qiqihar & Affiliated Qiqihar Hospital, Southern Medical University, No. 30 Park Road, Longsha, Qiqihar, 161005, Heilongjiang, People's Republic of China.
| | - Dongmei Wei
- Department of Traditional Chinese Medicine Geriatrics, The First Hospital of Qiqihar & Affiliated Qiqihar Hospital, Southern Medical University, Qiqihar, 161005, Heilongjiang, People's Republic of China
| | - Zhe Sun
- The Second Department of Endocrinology, The First Hospital of Qiqihar & Affiliated Qiqihar Hospital, Southern Medical University, No. 30 Park Road, Longsha, Qiqihar, 161005, Heilongjiang, People's Republic of China
| |
Collapse
|
12
|
Correia CCM, Rodrigues LF, de Avila Pelozin BR, Oliveira EM, Fernandes T. Long Non-Coding RNAs in Cardiovascular Diseases: Potential Function as Biomarkers and Therapeutic Targets of Exercise Training. Noncoding RNA 2021; 7:ncrna7040065. [PMID: 34698215 PMCID: PMC8544698 DOI: 10.3390/ncrna7040065] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/13/2022] Open
Abstract
Despite advances in treatments and therapies, cardiovascular diseases (CVDs) remain one of the leading causes of death worldwide. The discovery that most of the human genome, although transcribed, does not encode proteins was crucial for focusing on the potential of long non-coding RNAs (lncRNAs) as essential regulators of cell function at the epigenetic, transcriptional, and post-transcriptional levels. This class of non-coding RNAs is related to the pathophysiology of the cardiovascular system. The different expression profiles of lncRNAs, in different contexts of CVDs, change a great potential in their use as a biomarker and targets of therapeutic intervention. Furthermore, regular physical exercise plays a protective role against CVDs; on the other hand, little is known about its underlying molecular mechanisms. In this review, we look at the accumulated knowledge on lncRNAs and their functions in the cardiovascular system, focusing on the cardiovascular pathology of arterial hypertension, coronary heart disease, acute myocardial infarction, and heart failure. We discuss the potential of these molecules as biomarkers for clinical use, their limitations, and how the manipulation of the expression profile of these transcripts through physical exercise can begin to be suggested as a strategy for the treatment of CVDs.
Collapse
Affiliation(s)
- Camila Caldas Martins Correia
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-030, Brazil;
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Luis Felipe Rodrigues
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Bruno Rocha de Avila Pelozin
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Edilamar Menezes Oliveira
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
| | - Tiago Fernandes
- Laboratory of Biochemistry and Molecular Biology of Exercise, School of Physical Education and Sport, University of Sao Paulo, Sao Paulo 05508-030, Brazil; (L.F.R.); (B.R.d.A.P.); (E.M.O.)
- Correspondence: ; Tel.: + 55-11-2648-1566 (ext. 05508-030)
| |
Collapse
|
13
|
Rey F, Urrata V, Gilardini L, Bertoli S, Calcaterra V, Zuccotti GV, Cancello R, Carelli S. Role of long non-coding RNAs in adipogenesis: State of the art and implications in obesity and obesity-associated diseases. Obes Rev 2021; 22:e13203. [PMID: 33443301 PMCID: PMC8244036 DOI: 10.1111/obr.13203] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/14/2022]
Abstract
Obesity is an evolutionary, chronic, and relapsing disease that consists of a pathological accumulation of adipose tissue able to increase morbidity for high blood pressure, type 2 diabetes, metabolic syndrome, and obstructive sleep apnea in adults, children, and adolescents. Despite intense research over the last 20 years, obesity remains today a disease with a complex and multifactorial etiology. Recently, long non-coding RNAs (lncRNAs) are emerging as interesting new regulators as different lncRNAs have been found to play a role in early and late phases of adipogenesis and to be implicated in obesity-associated complications onset. In this review, we discuss the most recent advances on the role of lncRNAs in adipocyte biology and in obesity-associated complications. Indeed, more and more researchers are focusing on investigating the underlying roles that these molecular modulators could play. Even if a significant number of evidence is correlation-based, with lncRNAs being differentially expressed in a specific disease, recent works are now focused on deeply analyzing how lncRNAs can effectively modulate the disease pathogenesis onset and progression. LncRNAs possibly represent new molecular markers useful in the future for both the early diagnosis and a prompt clinical management of patients with obesity.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Valentina Urrata
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| | - Luisa Gilardini
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Simona Bertoli
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.,International Center for the Assessment of Nutritional Status (ICANS), Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatrics and Adolescentology Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy.,Department of Pediatrics, Children's Hospital "V. Buzzi", Milan, Italy
| | - Raffaella Cancello
- Obesity Unit-Laboratory of Nutrition and Obesity Research, Department of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy.,Pediatric Clinical Research Center Fondazione "Romeo ed Enrica Invernizzi", University of Milan, Milan, Italy
| |
Collapse
|
14
|
Cao Y, Jiang C, Lin H, Chen Z. Silencing of Long Noncoding RNA Growth Arrest-Specific 5 Alleviates Neuronal Cell Apoptosis and Inflammatory Responses Through Sponging microRNA-93 to Repress PTEN Expression in Spinal Cord Injury. Front Cell Neurosci 2021; 15:646788. [PMID: 34054430 PMCID: PMC8163226 DOI: 10.3389/fncel.2021.646788] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 04/20/2021] [Indexed: 02/01/2023] Open
Abstract
A secondary injury induced by a spinal cord injury (SCI) remains the main cause of devastating neural dysfunction; therefore, it has been the subject of focused research for many years. Long noncoding RNA (lncRNA) has been found to participate in the SCI process, and this finding presents a high potential for diagnosis and treatment; however, the role of lncRNA in a secondary injury induced by SCI remains unclear. The aim of this study was to investigate the regulatory effect of lncRNA growth arrest–specific transcript 5 (GAS5) in secondary injury during SCI. The SCI mice model and hypoxic cellular model were established to research the roles of lncRNA GAS5 during SCI. Reverse transcription quantitative polymerase chain reaction (qRT-PCR) was conducted to determine the expression levels of microR-93 (miR-93) and lncRNA GAS5. Western blot analysis of the apoptosis regulator protein and terminal deoxynucleotidyl transferase dUTP nick end labeling assay was conducted to evaluate neuron cell apoptosis. Basso, Beattie, and Bresnahan (BBB) scores were calculated to assess neurological function. Flow cytometry was used to determine neuron cell apoptosis. The associations among GAS5, miR-93, and the phosphatase and tensin homolog (PTEN) were disclosed using RNA immunoprecipitation (RIP) assay, RNA pulldown assay, and dual-luciferase reporter assay. QRT-PCR demonstrated that GAS5 was significantly upregulated in both the SCI mice and hypoxic cellular models. GAS5 knockdown suppressed neuron cell apoptosis and inflammatory response in the SCI mice model. Further studies have indicated that GAS5 functions as a competing endogenous RNA (ceRNA) by sponging miR-93 in neuronal cells. In addition, PTEN was a target of miR-93, and GAS5 knockdown exhibited its anti-apoptotic and anti-inflammatory effects through the miR-93/PTEN axis. These findings suggest that the GAS5/miR-93/PTEN axis may be a promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Yuanwu Cao
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chang Jiang
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haodong Lin
- Department of Orthopedic Surgery, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zixian Chen
- Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
15
|
Long non-coding RNA GAS5 aggravates myocardial depression in mice with sepsis via the microRNA-449b/HMGB1 axis and the NF-κB signaling pathway. Biosci Rep 2021; 41:227999. [PMID: 33645622 PMCID: PMC8035624 DOI: 10.1042/bsr20201738] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 01/04/2023] Open
Abstract
Sepsis is a common cause of deaths of patients in intensive care unit. The study aims to figure out the role of long non-coding RNA (lncRNA) GAS5 in the myocardial depression in mice with sepsis. Cecal ligation and puncture (CLP) was applied to induce sepsis in mice, and then the heart function, myocardium structure, and the inflammatory response were evaluated. Differentially expressed lncRNAs in mice with sepsis were identified. Then gain- and loss-of-functions of GAS5 were performed in mice to evaluate its role in mouse myocardial depression. The lncRNA-associated microRNA (miRNA)-mRNA network was figured out via an integrative prediction and detection. Myocardial injury was observed by overexpression of high-mobility group box 1 (HMGB1) in septic mice with knockdown of GAS5 expression. Activity of NF-κB signaling was evaluated, and NF-κB inhibition was induced in mice with sepsis and overexpression of GAS5. Collectively, CLP resulted in myocardial depression and injury, and increased inflammation in mice. GAS5 was highly expressed in septic mice. GAS5 inhibition reduced myocardial depression, myocardial injury and inflammation responses in septic mice. GAS5 was identified to bind with miR-449b and to elevate HMGB1 expression, thus activating the NF-κB signaling. HMGB1 overexpression or NF-κB inactivation reduced the GAS5-induced myocardial depression and inflammation in septic mice. Our study suggested that GAS5 might promote sepsis-induced myocardial depression via the miR-449b/HMGB1 axis and the following NF-κB activation.
Collapse
|
16
|
Li Y, Song B, Liu J, Li Y, Wang J, Liu N, Cui W. The interplay between HIF-1α and long noncoding GAS5 regulates the JAK1/STAT3 signalling pathway in hypoxia-induced injury in myocardial cells. Cardiovasc Diagn Ther 2021; 11:422-434. [PMID: 33968620 DOI: 10.21037/cdt-20-773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background Long non-coding RNA (lncRNA) GAS5 is associated with hypoxia-induced diseases whereas hypoxia-inducible factor-1α (HIF-1α) plays an important role in hypoxic injury of cells. The current study explores the regulatory functions of GAS5/HIF-1α which co-play in anoxic injury among rat cardiomyocytes H9C2 cells. Methods Hypoxia in vitro model was established through anoxic incubation while normal culture of H9C2 cells was considered as control. The expression levels of GAS5 and HIF-1α were quantified through RT-qPCR. CCK-8 was applied to determine cell viability. Cell apoptosis rate was calculated using flow cytometry whereas inflammatory cytokines were detected using ELISA method. The impact of downregulating GAS5 or HIF-1α or both upon hypoxic cells was assessed on the basis of changes in cell viability, apoptosis, and inflammatory response. The activity of JAK1/STAT3 signaling was evaluated through RT-qPCR for mRNA expression. AG490 was introduced to inactivate JAK1/STAT3 pathway and to unveil the impact of JAK1/STAT3 signaling on GAS5/HIF-1α and cell viability, apoptosis and inflammation in hypoxic cells. Results The results infer that hypoxia suppressed cell viability, promoted inflammation and apoptosis among H9C2 cells. GAS5 or HIF-1α recorded higher expression in hypoxia-induced cells whereas the cell viability got restored with reduction in inflammation and apoptosis. The downregulation of HIF-1α enhanced the protective effect of knocking down GAS5 in hypoxia H9C2 cells. JAK1/STAT3 signaling pathway got activated in hypoxic cells and was regulated by GAS5 and HIF-1α. The inhibition of signaling pathway increased the cell viability but it decreased both inflammation and apoptosis. Conclusions GAS5 and HIF-1α could regulate hypoxic injury in H9C2 cells through JAK1/STAT3 signaling pathway. This scenario suggests that the inhibitors of GAS5 and HIF-1α may synergize with AG-490 to protect myocardial cells from hypoxic injury.
Collapse
Affiliation(s)
- Yanwei Li
- Management Center of Chronic Diseases, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Bing Song
- Department of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jinlei Liu
- Department of Radiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yuqiang Li
- Biobank Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Jiebing Wang
- Department of Ultrasonography, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Na Liu
- Endocrinology Department, Affiliated Hospital of Weifang Medical College, Weifang, China
| | - Wei Cui
- Liaoning Jinzhou Inspection and Testing Certification Center, Jinzhou, China
| |
Collapse
|
17
|
Xiao D, Cui X, Fang N, Yu S, Wang X. LINC01303 promotes the proliferation and migration of laryngeal carcinoma by regulating miR-200c/TIMP2 axis. Am J Transl Res 2021; 13:1643-1656. [PMID: 33841686 PMCID: PMC8014399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND It is reported that long non-coding RNA is crucial in many cancer progressions. But the function and regulatory mechanism of LINC01303 in human laryngeal squamous cell carcinoma (LSCC) remains unclear. Hence, this research aims at investigating the biological function and potential mechanism of LINC01303 in LSCC. METHODS Real-time quantitative PCR (qRT-PCR) was applied for the determination of LINC01303, miR-200c and TIMP metallopeptidase inhibitor 2 (TIMP2) expression in LSCC tissues and cell lines. Corresponding experiments were carried out to determine the impacts of LINC01303 on LSCC cell proliferation, apoptosis, migration and invasion. The interaction between LINC01303 and miR-200c was analyzed with bioinformatics analysis and luciferase activity analysis. RESULTS LINC01303 expression in LSCC tissues was notably higher than that in adjacent normal tissues. High LINC01303 expression was bound up with lymphatic metastasis and advanced clinical stage. In addition, inhibition of LINC01303 by siRNA could evidently block LSCC cell proliferation, induce apoptosis, and inhibit invasion and migration. Mechanically, LINC01303 acted as carcinogenic lncRNA in LSCC by regulating miR-200c/TIMP2 axis. CONCLUSION LINC01303 plays a carcinogenic part in LSCC carcinogenesis through regulating miR-200c/TIMP2 axis, which may become a promising target of LSCC therapy.
Collapse
Affiliation(s)
- Dong Xiao
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University Changchun 130021, People's Republic of China
| | - Xiangyan Cui
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University Changchun 130021, People's Republic of China
| | - Ning Fang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University Changchun 130021, People's Republic of China
| | - Shujian Yu
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University Changchun 130021, People's Republic of China
| | - Xin Wang
- Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University Changchun 130021, People's Republic of China
| |
Collapse
|
18
|
Yan X, Hou J. miR-22 Host Gene Enhances Nuclear Factor-kappa B Activation to Aggravate Hypoxia-induced Injury in AC16 Cardiomyocytes. Cell Transplant 2021; 30:963689721990323. [PMID: 33631962 PMCID: PMC7917431 DOI: 10.1177/0963689721990323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Myocardial infarction (MI) is a severe life-threatening disease caused by acute and persistent ischemia and hypoxia and eventually leads to heart failure and sudden death. Long noncoding RNAs (lncRNAs) play significant roles in the pathology, diagnosis, and development of various cardiovascular diseases, including MI. This study aimed to explore the effect and molecular mechanism of lncRNA miR-22 host gene (MIR22HG) on hypoxia-induced injury in AC16 cardiomyocytes. The expression of MIR22HG and miR-24 in hypoxia-treated AC16 cardiomyocytes was detected by quantitative real-time polymerase chain reaction. Cell viability, lactate dehydrogenase release, levels of aspartate aminotransferase (AST) and creatine kinase-MB (CK-MB), and apoptosis were detected by Cell Counting Kit-8, lactate dehydrogenase (LDH) release assay, commercial enzyme-linked immune sorbent assay kits, and flow cytometry analysis, respectively. The protein levels of nuclear factor-kappa B (NF-κB) p65 and cytoplasmic inhibitor of kappa B alpha (IκBα) and phosphorylated IκBα were detected by western blot. Results showed that hypoxia treatment decreased viability and increased MIR22HG expression in AC16 cardiomyocytes. MIR22HG overexpression aggravated hypoxia-induced viability reduction, leakage of myocardial injury markers LDH, AST, and CK-MB, and apoptosis in AC16 cardiomyocytes, while MIR22HG knockdown elicited the reverse effects. MIR22HG overexpression enhanced NF-κB activation in hypoxia-treated AC16 cardiomyocytes. Inhibition of NF-κB pathway impaired the effects of MIR22HG overexpression on hypoxia-induced injury in AC16 cardiomyocytes. Moreover, MIR22HG knockdown inhibited the NF-κB pathway by upregulating miR-24 in AC16 cardiomyocytes. Inhibition of miR-24 resisted the effects of MIR22HG silencing on hypoxia-induced injury in AC16 cardiomyocytes. In conclusion, MIR22HG overexpression aggravated hypoxia-induced injury in AC16 cardiomyocytes via enhancing NF-κB activation by targeting miR-24.
Collapse
Affiliation(s)
- Xu Yan
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, PR China
| | - Jinlan Hou
- Department of Cardiology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, PR China
| |
Collapse
|
19
|
Liu L, Zhang J, Liu Y. MicroRNA-1323 serves as a biomarker in gestational diabetes mellitus and aggravates high glucose-induced inhibition of trophoblast cell viability by suppressing TP53INP1. Exp Ther Med 2021; 21:230. [PMID: 33603839 PMCID: PMC7851622 DOI: 10.3892/etm.2021.9661] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022] Open
Abstract
Gestational diabetes mellitus (GDM) leads to poor pregnancy outcomes, and microRNAs (miRNAs/miRs) have been suggested to be associated with GDM, but the pathological mechanisms remain unclear. The present study aimed to investigate the diagnostic value of miR-1323 in GDM patients and its effects on trophoblast cell viability. Additionally, the present study investigated the correlation between miR-1323 and TP53INP1 to understand the pathological mechanism of GDM progression. Reverse transcription-quantitative polymerase chain reaction was used to detect the miR-1323 expression and TP53INP1 mRNA expression. The diagnostic value of serum miR-1323 was evaluated by receiver operating characteristic analysis. HTR-8/SVneo and BeWo cells were treated with high glucose (HG) to construct cell models of GDM, and trophoblast cell viability was assessed using an MTT assay. The protein expression of TP53INP1 was detected by western blot analysis. The correlation between miR-1323 and TP53INP1 was investigated by luciferase reporter assay. The miR-1323 expression was increased in patients with GDM, which had relatively high diagnostic accuracy for GDM screening and was positively correlated with fasting blood glucose in patients GDM. HG upregulated the miR-1323 expression and inhibited trophoblast cell viability. Overexpression of miR-1323 significantly inhibited the viability of HG-induced trophoblast cells. TP53INP1, a target gene of miR-1323, was negatively correlated with miR-1323. TP53INP1 overexpression reversed the inhibitory effect of miR-1323 overexpression on the viability of HG-treated trophoblast cells. Increased levels of serum miR-1323 may be a diagnostic biomarker for GDM. Additionally, miR-1323 may inhibit trophoblast cell viability by inhibiting TP53INP1, suggesting that it may be a potential therapeutic target for GDM.
Collapse
Affiliation(s)
- Lijun Liu
- Department of Gynecology, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| | - Jun Zhang
- Department of Pharmacy, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| | - Yujuan Liu
- Department of Central Supply Room, Weifang Maternal and Child Health Hospital, Weifang, Shandong 261011, P.R. China
| |
Collapse
|
20
|
Xu Y, Fang H, Xu Q, Xu C, Yang L, Huang C. LncRNA GAS5 inhibits NLRP3 inflammasome activation-mediated pyroptosis in diabetic cardiomyopathy by targeting miR-34b-3p/AHR. Cell Cycle 2020; 19:3054-3065. [PMID: 33092444 DOI: 10.1080/15384101.2020.1831245] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long noncoding RNA GAS5 is down-regulated in cardiomyocytes in diabetic cardiomyopathy (DCM). Here, we studied the involvement of GAS5 in DCM by analyzing its expression in DCM mouse model and cardiac muscle cell line (HL-1 cells). Compared with normal mice, GAS5 was severely down-regulated in heart tissues of DCM mice. GAS5 overexpression improved cardiac function and myocardial hypertrophy in DCM mice. In addition, the expression of NLRP3, caspase-1, Pro-caspase-1, IL-1β and IL-18 were increased in heart tissues of DCM mice and high glucose-treated HL-1 cells, which was repressed by GAS5 up-regulation. GAS5 overexpression suppressed caspase-1 activity, LDH release and the levels of IL-1β, IL-18 in the high glucose-treated HL-1 cells. Moreover, GAS5 regulated AHR expression by sponging miR-34b-3p. Furthermore, GAS5 overexpression suppressed NLRP3 inflammasome activation-mediated pyroptosis by regulating miR-34b-3p/AHR axis. In summary, our study demonstrates that GAS5 acts as a competing endogenous RNA to enhance AHR expression by sponging miR-34b-3p, which consequently represses NLRP3 inflammasome activation-mediated pyroptosis to improve DCM. Thus, our data provide a novel lncRNA GAS5 that could be a valuable target for DCM treatment.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Haiyang Fang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Qin Xu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Congcong Xu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Lu Yang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Chahua Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
21
|
Liu B, Cheng Y, Tian J, Zhang L, Cui X. Upregulated lncRNA Pvt1 may be important for cardiac remodeling at the infarct border zone. Mol Med Rep 2020; 22:2605-2616. [PMID: 32945428 PMCID: PMC7453657 DOI: 10.3892/mmr.2020.11371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/21/2020] [Indexed: 12/31/2022] Open
Abstract
Myocardial infarction (MI) is a leading cause of mortality due to progression to ventricular arrhythmias (VAs) or heart failure (HF). Cardiac remodeling at the infarct border zone (IBZ) is the primary contributor for VAs or HF. Therefore, genes involved in IBZ remodeling may be potential targets for the treatment of MI, but the mechanism remains unclear. The present study aimed to explain the molecular mechanisms of IBZ remodeling based on the roles of long non-coding RNAs (lncRNAs). After downloading miRNA (GSE76592) and mRNA/lncRNA (GSE52313) datasets from the Gene Expression Omnibus database, 23 differentially expressed miRNAs (DEMs), 2,563 genes (DEGs) and 168 lncRNAs (DELs) were identified between IBZ samples of MI mice and sham controls. A total of 483 DEGs were predicted to be regulated by 23 DEMs, among which Itgam, Met and TNF belonged to hub genes after five topological parameters were calculated for genes in the protein-protein interaction network. These hub genes-associated DEMs (mmu-miR-181a, mmu-miR-762) can also interact with six DELs (Gm15832, Gas5, Gm6634, Pvt1, Gm14636 and A330023F24Rik) to constitute the competing endogenous RNA (ceRNA) axes. Furthermore, a co-expression network was constructed based on the co-expression pairs between 44 DELs and 297 DEGs, in which Pvt1 and Bst1 were overlapped with the ceRNA network. Thus, Bst1-associated ceRNA (Pvt1-mmu-miR-181a-Bst1) and co-expression (Pvt-Bst1) axes were also pivotal for MI. Accordingly, Pvt1 may be a crucial lncRNA for modification of cardiac remodeling in the IBZ after MI and may function by acting as a ceRNA for miR-181a to regulate TNF/Met/Itgam/Bst1 or by co-expressing with Bst1.
Collapse
Affiliation(s)
- Baihui Liu
- Department of Emergency Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Yuanjuan Cheng
- Department of Nursing, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Jiakun Tian
- Department of Emergency Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Li Zhang
- Department of Emergency Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| | - Xiaoqian Cui
- Department of Emergency Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, P.R. China
| |
Collapse
|
22
|
The roles of long noncoding RNAs in myocardial pathophysiology. Biosci Rep 2020; 39:220734. [PMID: 31694052 PMCID: PMC6851514 DOI: 10.1042/bsr20190966] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/03/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs), more than 200 nt in length, are functional molecules found in various species. These lncRNAs play a vital role in cell proliferation, differentiation, and degeneration and are also involved in pathophysiological processes of cancer and neurodegenerative, autoimmune, and cardiovascular diseases (CVDs). In recent years, emerging challenges for intervention studies on ischemic heart diseases have received much attention. LncRNAs have a key function in the alleviation of myocardial infarction (MI) injury and myocardial ischemia–reperfusion injury. During cardiac hypertrophy (CH) and fibrosis, cardiac cells undergo structural changes and become dysfunctional due to the effects of neurohormonal factors. LncRNAs may serve as important therapeutic targets that promote cardiac remodeling and then retard the development of heart failure (HF). In addition, studies on the roles and mechanisms of action of lncRNAs participating in cardiac pathophysiology via other factors have become the focus of research worldwide. Here, we review the current knowledge on various lncRNAs and their functions in cardiac biology, particularly concentrating on ischemic heart disease, CH, and cardiac fibrosis. We next discuss the predictive value of lncRNAs as diagnostic biomarkers of CVDs.
Collapse
|
23
|
Zhang Y, Ye F, Xiong D, Gao X. LDNFSGB: prediction of long non-coding rna and disease association using network feature similarity and gradient boosting. BMC Bioinformatics 2020; 21:377. [PMID: 32883200 PMCID: PMC7469344 DOI: 10.1186/s12859-020-03721-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/21/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND A large number of experimental studies show that the mutation and regulation of long non-coding RNAs (lncRNAs) are associated with various human diseases. Accurate prediction of lncRNA-disease associations can provide a new perspective for the diagnosis and treatment of diseases. The main function of many lncRNAs is still unclear and using traditional experiments to detect lncRNA-disease associations is time-consuming. RESULTS In this paper, we develop a novel and effective method for the prediction of lncRNA-disease associations using network feature similarity and gradient boosting (LDNFSGB). In LDNFSGB, we first construct a comprehensive feature vector to effectively extract the global and local information of lncRNAs and diseases through considering the disease semantic similarity (DISSS), the lncRNA function similarity (LNCFS), the lncRNA Gaussian interaction profile kernel similarity (LNCGS), the disease Gaussian interaction profile kernel similarity (DISGS), and the lncRNA-disease interaction (LNCDIS). Particularly, two methods are used to calculate the DISSS (LNCFS) for considering the local and global information of disease semantics (lncRNA functions) respectively. An autoencoder is then used to reduce the dimensionality of the feature vector to obtain the optimal feature parameter from the original feature set. Furthermore, we employ the gradient boosting algorithm to obtain the lncRNA-disease association prediction. CONCLUSIONS In this study, hold-out, leave-one-out cross-validation, and ten-fold cross-validation methods are implemented on three publicly available datasets to evaluate the performance of LDNFSGB. Extensive experiments show that LDNFSGB dramatically outperforms other state-of-the-art methods. The case studies on six diseases, including cancers and non-cancers, further demonstrate the effectiveness of our method in real-world applications.
Collapse
Affiliation(s)
- Yuan Zhang
- School of Mathematics and Computational Science, Xiangtan University, Xiangtan 411105, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Fei Ye
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China
| | - Dapeng Xiong
- Department of Computational Biology, Ithaca, New York 14853, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York 14853, USA
| | - Xieping Gao
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Xiangtan 411105, China.
- College of Medical Imaging and Inspection, Xiangnan University, Chenzhou 423000, China.
| |
Collapse
|
24
|
Wang Z, Fu M, Li Y. miR-142-5p and miR-212-5p cooperatively inhibit the proliferation and collagen formation of cardiac fibroblasts by regulating c-Myc/TP53INP1. Can J Physiol Pharmacol 2020; 98:314-323. [PMID: 32268073 DOI: 10.1139/cjpp-2019-0495] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The aim of this study was to investigate the effect and mechanism of miR-142-5p/212-5p on the proliferation and collagen formation of cardiac fibroblasts (CFs) after myocardial infarction (MI). The mouse MI model was established by ligation of the left anterior descending coronary artery. CFs were induced by transforming growth factor-beta 1 (TGF-β1) or angiotensin (Ang II). The molecule expressions were measured by qRT-PCR and Western blot. CF proliferation was detected by an MTT assay. The effect of miR-142-5p/212-5p on the luciferase activity of c-Myc 3′UTR was assessed by the luciferase reporter assay. miR-142-5p and miR-212-5p were downregulated in cardiac tissues of MI mice and in TGF-β1- or Ang II-induced CFs, while the protein levels of collagen I and III were upregulated. Moreover, simultaneous overexpression of miR-142-5p/212-5p inhibited the proliferation and collagen formation of TGF-β1- or Ang II-stimulated CFs to a greater extent than either miR-142-5p or miR-212-5p overexpression alone. MiR-142-5p/212-5p targeted c-Myc and negatively regulated its expression. The effects of miR-142-5p/212-5p overexpression on the TP53INP1 protein level and the proliferation and collagen formation of CFs were reversed by c-Myc overexpression. Moreover, overexpression of miR-142-5p/212-5p improved cardiac function and collagen formation of MI mice. Overexpression of miR-142-5p/212-5p cooperatively suppresses the proliferation and collagen formation after MI by regulating c-Myc/TP53INP1.
Collapse
Affiliation(s)
- Zhiqian Wang
- Department of Geriatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang; 050000, Hebei Province, China
| | - Mingming Fu
- Department of Geriatric Orthopaedics, The Third Hospital of Hebei Medical University, Shijiazhuang; 050000, Hebei Province, China
| | - Yongjun Li
- Department of Cardiology, The Second Hospital of Hebei Medical University, Shijiazhuang; 050000, Hebei Province, China
| |
Collapse
|