1
|
Scat S, Weissman KJ, Chagot B. Insights into docking in megasynthases from the investigation of the toblerol trans-AT polyketide synthase: many α-helical means to an end. RSC Chem Biol 2024; 5:669-683. [PMID: 38966669 PMCID: PMC11221535 DOI: 10.1039/d4cb00075g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/16/2024] [Indexed: 07/06/2024] Open
Abstract
The fidelity of biosynthesis by modular polyketide synthases (PKSs) depends on specific moderate affinity interactions between successive polypeptide subunits mediated by docking domains (DDs). These sequence elements are notably portable, allowing their transplantation into alternative biosynthetic and metabolic contexts. Herein, we use integrative structural biology to characterize a pair of DDs from the toblerol trans-AT PKS. Both are intrinsically disordered regions (IDRs) that fold into a 3 α-helix docking complex of unprecedented topology. The C-terminal docking domain (CDD) resembles the 4 α-helix type (4HB) CDDs, which shows that the same type of DD can be redeployed to form complexes of distinct geometry. By carefully re-examining known DD structures, we further extend this observation to type 2 docking domains, establishing previously unsuspected structural relations between DD types. Taken together, these data illustrate the plasticity of α-helical DDs, which allow the formation of a diverse topological spectrum of docked complexes. The newly identified DDs should also find utility in modular PKS genetic engineering.
Collapse
Affiliation(s)
- Serge Scat
- Université de Lorraine, CNRS, IMoPA F-54000 Nancy France
| | | | | |
Collapse
|
2
|
Gupta MN, Uversky VN. Protein structure-function continuum model: Emerging nexuses between specificity, evolution, and structure. Protein Sci 2024; 33:e4968. [PMID: 38532700 DOI: 10.1002/pro.4968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/18/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The rationale for replacing the old binary of structure-function with the trinity of structure, disorder, and function has gained considerable ground in recent years. A continuum model based on the expanded form of the existing paradigm can now subsume importance of both conformational flexibility and intrinsic disorder in protein function. The disorder is actually critical for understanding the protein-protein interactions in many regulatory processes, formation of membrane-less organelles, and our revised notions of specificity as amply illustrated by moonlighting proteins. While its importance in formation of amyloids and function of prions is often discussed, the roles of intrinsic disorder in infectious diseases and protein function under extreme conditions are also becoming clear. This review is an attempt to discuss how our current understanding of protein function, specificity, and evolution fit better with the continuum model. This integration of structure and disorder under a single model may bring greater clarity in our continuing quest for understanding proteins and molecular mechanisms of their functionality.
Collapse
Affiliation(s)
- Munishwar Nath Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi, India
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
3
|
Sadahiro Y, Nishimura S, Hitora Y, Tsukamoto S. Syrosingopine Enhances 20S Proteasome Activity and Degradation of α-Synuclein. JOURNAL OF NATURAL PRODUCTS 2024; 87:554-559. [PMID: 37938154 DOI: 10.1021/acs.jnatprod.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Cellular proteins are degraded by the 26S proteasome in the ubiquitin-proteasome system in an ATP-dependent manner, whereas intrinsically disordered proteins (IDPs) are degraded by the 20S proteasome independent of ATP and ubiquitin. The accumulation and aggregation of IDPs are considered to be the etiology of neurodegenerative diseases. Notably, the 20S proteasome has a cylindrical structure, and its gate on the α-ring is closed in the inactive form. The compounds that open the gate promote the degradation of IDPs and prevent their accumulation, and therefore, such compounds may be promising therapeutic agents for neurodegenerative diseases. After screening the Prestwick Phytochemical Library, several yohimbine-type and ergot alkaloids were identified that enhance the 20S proteasome activity. Among them, syrosingopine was the most potent activator of the 20S proteasome and enhanced the degradation of fluorogenic substrates and α-synuclein, an IDP. Furthermore, in HeLa cells, syrosingopine enabled the binding of a membrane-permeable fluorescent probe to the catalytic site of the 20S proteasome by opening the gate.
Collapse
Affiliation(s)
- Yusaku Sadahiro
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Soichiro Nishimura
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Yuki Hitora
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| |
Collapse
|
4
|
Vieira MFM, Hernandez G, Zhong Q, Arbesú M, Veloso T, Gomes T, Martins ML, Monteiro H, Frazão C, Frankel G, Zanzoni A, Cordeiro TN. The pathogen-encoded signalling receptor Tir exploits host-like intrinsic disorder for infection. Commun Biol 2024; 7:179. [PMID: 38351154 PMCID: PMC10864410 DOI: 10.1038/s42003-024-05856-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
The translocated intimin receptor (Tir) is an essential type III secretion system (T3SS) effector of attaching and effacing pathogens contributing to the global foodborne disease burden. Tir acts as a cell-surface receptor in host cells, rewiring intracellular processes by targeting multiple host proteins. We investigated the molecular basis for Tir's binding diversity in signalling, finding that Tir is a disordered protein with host-like binding motifs. Unexpectedly, also are several other T3SS effectors. By an integrative approach, we reveal that Tir dimerises via an antiparallel OB-fold within a highly disordered N-terminal cytosolic domain. Also, it has a long disordered C-terminal cytosolic domain partially structured at host-like motifs that bind lipids. Membrane affinity depends on lipid composition and phosphorylation, highlighting a previously unrecognised host interaction impacting Tir-induced actin polymerisation and cell death. Furthermore, multi-site tyrosine phosphorylation enables Tir to engage host SH2 domains in a multivalent fuzzy complex, consistent with Tir's scaffolding role and binding promiscuity. Our findings provide insights into the intracellular Tir domains, highlighting the ability of T3SS effectors to exploit host-like protein disorder as a strategy for host evasion.
Collapse
Affiliation(s)
- Marta F M Vieira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Guillem Hernandez
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Qiyun Zhong
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Miguel Arbesú
- Department of NMR-supported Structural Biology, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
- InstaDeep Ltd, 5 Merchant Square, London, UK
| | - Tiago Veloso
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Tiago Gomes
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Maria L Martins
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Hugo Monteiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Carlos Frazão
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Gad Frankel
- Department of Life Sciences, Imperial College London, South Kensington Campus, London, UK
| | - Andreas Zanzoni
- Aix-Marseille Université, Inserm, TAGC, UMR_S1090, Marseille, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal.
| |
Collapse
|
5
|
Kovács D, Bodor A. The influence of random-coil chemical shifts on the assessment of structural propensities in folded proteins and IDPs. RSC Adv 2023; 13:10182-10203. [PMID: 37006359 PMCID: PMC10065145 DOI: 10.1039/d3ra00977g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
In studying secondary structural propensities of proteins by nuclear magnetic resonance (NMR) spectroscopy, secondary chemical shifts (SCSs) serve as the primary atomic scale observables. For SCS calculation, the selection of an appropriate random coil chemical shift (RCCS) dataset is a crucial step, especially when investigating intrinsically disordered proteins (IDPs). The scientific literature is abundant in such datasets, however, the effect of choosing one over all the others in a concrete application has not yet been studied thoroughly and systematically. Hereby, we review the available RCCS prediction methods and to compare them, we conduct statistical inference by means of the nonparametric sum of ranking differences and comparison of ranks to random numbers (SRD-CRRN) method. We try to find the RCCS predictors best representing the general consensus regarding secondary structural propensities. The existence and the magnitude of resulting differences on secondary structure determination under varying sample conditions (temperature, pH) are demonstrated and discussed for globular proteins and especially IDPs.
Collapse
Affiliation(s)
- Dániel Kovács
- ELTE, Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory Pázmány Péter sétány 1/A Budapest 1117 Hungary
- Eötvös Loránd University, Hevesy György PhD School of Chemistry Pázmány Péter sétány 1/A Budapest 1117 Hungary
| | - Andrea Bodor
- ELTE, Eötvös Loránd University, Institute of Chemistry, Analytical and BioNMR Laboratory Pázmány Péter sétány 1/A Budapest 1117 Hungary
| |
Collapse
|
6
|
Gordon-Kim C, Rha A, Poppitz GA, Smith-Carpenter J, Luu R, Roberson AB, Conklin R, Blake A, Lynn DG. Polyanion order controls liquid-to-solid phase transition in peptide/nucleic acid co-assembly. Front Mol Biosci 2022; 9:991728. [PMID: 36452451 PMCID: PMC9702359 DOI: 10.3389/fmolb.2022.991728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/25/2022] [Indexed: 01/06/2024] Open
Abstract
The Central Dogma highlights the mutualistic functions of protein and nucleic acid biopolymers, and this synergy appears prominently in the membraneless organelles widely distributed throughout prokaryotic and eukaryotic organisms alike. Ribonucleoprotein granules (RNPs), which are complex coacervates of RNA with proteins, are a prime example of these membranelles organelles and underly multiple essential cellular functions. Inspired by the highly dynamic character of these organelles and the recent studies that ATP both inhibits and templates phase separation of the fused in sarcoma (FUS) protein implicated in several neurodegenerative diseases, we explored the RNA templated ordering of a single motif of the Aβ peptide of Alzheimer's disease. We now know that this strong cross-β propensity motif alone assembles through a liquid-like coacervate phase that can be externally templated to form distinct supramolecular assemblies. Now we provide evidence that structured phosphates, ranging from complex structures like double stranded and quadraplex DNA to simple trimetaphosphate, differentially impact the liquid to solid phase transition necessary for paracrystalline assembly. The results from this simple model illustrate the potential of ordered environmental templates in the transition to potentially irreversible pathogenic assemblies and provides insight into the ordering dynamics necessary for creating functional synthetic polymer co-assemblies.
Collapse
Affiliation(s)
| | - Allisandra Rha
- Children’s Health of Orange County, Research Institute, Orange, CA, United States
| | - George A. Poppitz
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | | | - Regina Luu
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | | | - Russell Conklin
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - Alexis Blake
- Department of Chemistry, Emory University, Atlanta, GA, United States
| | - David G. Lynn
- Department of Chemistry, Emory University, Atlanta, GA, United States
- Department of Biology, Emory University, Atlanta, GA, United States
| |
Collapse
|
7
|
Intrinsically disordered proteins and proteins with intrinsically disordered regions in neurodegenerative diseases. Biophys Rev 2022; 14:679-707. [DOI: 10.1007/s12551-022-00968-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/28/2022] [Indexed: 12/14/2022] Open
|
8
|
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020; 21:E9045. [PMID: 33260713 PMCID: PMC7730420 DOI: 10.3390/ijms21239045] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.
Collapse
Affiliation(s)
- Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille University and CNRS, 13288 Marseille, France
| | - Vladimir Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33601, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
9
|
Murvai N, Kalmar L, Szalaine Agoston B, Szabo B, Tantos A, Csikos G, Micsonai A, Kardos J, Vertommen D, Nguyen PN, Hristozova N, Lang A, Kovacs D, Buday L, Han KH, Perczel A, Tompa P. Interplay of Structural Disorder and Short Binding Elements in the Cellular Chaperone Function of Plant Dehydrin ERD14. Cells 2020; 9:E1856. [PMID: 32784707 PMCID: PMC7465474 DOI: 10.3390/cells9081856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/16/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022] Open
Abstract
Details of the functional mechanisms of intrinsically disordered proteins (IDPs) in living cells is an area not frequently investigated. Here, we dissect the molecular mechanism of action of an IDP in cells by detailed structural analyses based on an in-cell nuclear magnetic resonance experiment. We show that the ID stress protein (IDSP) A. thaliana Early Response to Dehydration (ERD14) is capable of protecting E. coli cells under heat stress. The overexpression of ERD14 increases the viability of E. coli cells from 38.9% to 73.9% following heat stress (50 °C × 15 min). We also provide evidence that the protection is mainly achieved by protecting the proteome of the cells. In-cell NMR experiments performed in E. coli cells show that the protective activity is associated with a largely disordered structural state with conserved, short sequence motifs (K- and H-segments), which transiently sample helical conformations in vitro and engage in partner binding in vivo. Other regions of the protein, such as its S segment and its regions linking and flanking the binding motifs, remain unbound and disordered in the cell. Our data suggest that the cellular function of ERD14 is compatible with its residual structural disorder in vivo.
Collapse
Affiliation(s)
- Nikoletta Murvai
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Lajos Kalmar
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Bianka Szalaine Agoston
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Beata Szabo
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Gyorgy Csikos
- Department of General Zoology, Eötvös Loránd University, 1117 Budapest, Hungary;
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - Didier Vertommen
- Faculty of Medicine and de Duve Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Phuong N. Nguyen
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Nevena Hristozova
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Andras Lang
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Denes Kovacs
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| | - Laszlo Buday
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
| | - Kyou-Hoon Han
- Gene Editing Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Andras Perczel
- MTA-ELTE Protein Modelling Research Group and Laboratory of Structural Chemistry and Biology, Institute of Chemistry, Eötvös L. University, 1117 Budapest, Hungary; (A.L.); (A.P.)
| | - Peter Tompa
- Institute of Enzymology, Research Centre for Natural Sciences, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.A.); (B.S.); (A.T.); (L.B.)
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium; (P.N.N.); (N.H.); (D.K.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
| |
Collapse
|
10
|
de Brevern AG. Analysis of Protein Disorder Predictions in the Light of a Protein Structural Alphabet. Biomolecules 2020; 10:biom10071080. [PMID: 32698546 PMCID: PMC7408373 DOI: 10.3390/biom10071080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/14/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022] Open
Abstract
Intrinsically-disordered protein (IDP) characterization was an amazing change of paradigm in our classical sequence-structure-function theory. Moreover, IDPs are over-represented in major disease pathways and are now often targeted using small molecules for therapeutic purposes. This has had created a complex continuum from order-that encompasses rigid and flexible regions-to disorder regions; the latter being not accessible through classical crystallographic methodologies. In X-ray structures, the notion of order is dictated by access to resolved atom positions, providing rigidity and flexibility information with low and high experimental B-factors, while disorder is associated with the missing (non-resolved) residues. Nonetheless, some rigid regions can be found in disorder regions. Using ensembles of IDPs, their local conformations were analyzed in the light of a structural alphabet. An entropy index derived from this structural alphabet allowed us to propose a continuum of states from rigidity to flexibility and finally disorder. In this study, the analysis was extended to comparing these results to disorder predictions, underlying a limited correlation, and so opening new ideas to characterize and predict disorder.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- INSERM, UMR_S 1134, DSIMB, Univ Paris, INTS, Laboratoire d'Excellence GR-Ex, 75015 Paris, France
| |
Collapse
|
11
|
Chen J, Liu X, Chen J. Targeting Intrinsically Disordered Proteins through Dynamic Interactions. Biomolecules 2020; 10:E743. [PMID: 32403216 PMCID: PMC7277182 DOI: 10.3390/biom10050743] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/04/2020] [Accepted: 05/09/2020] [Indexed: 12/18/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are over-represented in major disease pathways and have attracted significant interest in understanding if and how they may be targeted using small molecules for therapeutic purposes. While most existing studies have focused on extending the traditional structure-centric drug design strategies and emphasized exploring pre-existing structure features of IDPs for specific binding, several examples have also emerged to suggest that small molecules could achieve specificity in binding IDPs and affect their function through dynamic and transient interactions. These dynamic interactions can modulate the disordered conformational ensemble and often lead to modest compaction to shield functionally important interaction sites. Much work remains to be done on further elucidation of the molecular basis of the dynamic small molecule-IDP interaction and determining how it can be exploited for targeting IDPs in practice. These efforts will rely critically on an integrated experimental and computational framework for disordered protein ensemble characterization. In particular, exciting advances have been made in recent years in enhanced sampling techniques, Graphic Processing Unit (GPU)-computing, and protein force field optimization, which have now allowed rigorous physics-based atomistic simulations to generate reliable structure ensembles for nontrivial IDPs of modest sizes. Such de novo atomistic simulations will play crucial roles in exploring the exciting opportunity of targeting IDPs through dynamic interactions.
Collapse
Affiliation(s)
- Jianlin Chen
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou 318000, Zhejiang, China;
| | - Xiaorong Liu
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
| | - Jianhan Chen
- Department of Chemistry, University of Massachusetts, Amherst, MA 01003, USA;
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
12
|
Salient Features of Monomeric Alpha-Synuclein Revealed by NMR Spectroscopy. Biomolecules 2020; 10:biom10030428. [PMID: 32164323 PMCID: PMC7175124 DOI: 10.3390/biom10030428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/09/2020] [Accepted: 03/04/2020] [Indexed: 12/17/2022] Open
Abstract
Elucidating the structural details of proteins is highly valuable and important for the proper understanding of protein function. In the case of intrinsically disordered proteins (IDPs), however, obtaining the structural details is quite challenging, as the traditional structural biology tools have only limited use. Nuclear magnetic resonance (NMR) is a unique experimental tool that provides ensemble conformations of IDPs at atomic resolution, and when studying IDPs, a slightly different experimental strategy needs to be employed than the one used for globular proteins. We address this point by reviewing many NMR investigations carried out on the α-synuclein protein, the aggregation of which is strongly correlated with Parkinson’s disease.
Collapse
|
13
|
Yang J, Zeng Y, Liu Y, Gao M, Liu S, Su Z, Huang Y. Electrostatic interactions in molecular recognition of intrinsically disordered proteins. J Biomol Struct Dyn 2019; 38:4883-4894. [DOI: 10.1080/07391102.2019.1692073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jing Yang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yifan Zeng
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yunfei Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Meng Gao
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Sen Liu
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zhengding Su
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Yongqi Huang
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| |
Collapse
|
14
|
Transient Secondary Structures as General Target-Binding Motifs in Intrinsically Disordered Proteins. Int J Mol Sci 2018; 19:ijms19113614. [PMID: 30445805 PMCID: PMC6275026 DOI: 10.3390/ijms19113614] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 11/06/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unorthodox proteins that do not form three-dimensional structures under non-denaturing conditions, but perform important biological functions. In addition, IDPs are associated with many critical diseases including cancers, neurodegenerative diseases, and viral diseases. Due to the generic name of “unstructured” proteins used for IDPs in the early days, the notion that IDPs would be completely unstructured down to the level of secondary structures has prevailed for a long time. During the last two decades, ample evidence has been accumulated showing that IDPs in their target-free state are pre-populated with transient secondary structures critical for target binding. Nevertheless, such a message did not seem to have reached with sufficient clarity to the IDP or protein science community largely because similar but different expressions were used to denote the fundamentally same phenomenon of presence of such transient secondary structures, which is not surprising for a quickly evolving field. Here, we summarize the critical roles that these transient secondary structures play for diverse functions of IDPs by describing how various expressions referring to transient secondary structures have been used in different contexts.
Collapse
|