1
|
Wei J, Fei Z, Pan G, Weiss LM, Zhou Z. Current Therapy and Therapeutic Targets for Microsporidiosis. Front Microbiol 2022; 13:835390. [PMID: 35356517 PMCID: PMC8959712 DOI: 10.3389/fmicb.2022.835390] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Microsporidia are obligate intracellular, spore-forming parasitic fungi which are grouped with the Cryptomycota. They are both opportunistic pathogens in humans and emerging veterinary pathogens. In humans, they cause chronic diarrhea in immune-compromised patients and infection is associated with increased mortality. Besides their role in pébrine in sericulture, which was described in 1865, the prevalence and severity of microsporidiosis in beekeeping and aquaculture has increased markedly in recent decades. Therapy for these pathogens in medicine, veterinary, and agriculture has become a recent focus of attention. Currently, there are only a few commercially available antimicrosporidial drugs. New therapeutic agents are needed for these infections and this is an active area of investigation. In this article we provide a comprehensive summary of the current as well as several promising new agents for the treatment of microsporidiosis including: albendazole, fumagillin, nikkomycin, orlistat, synthetic polyamines, and quinolones. Therapeutic targets which could be utilized for the design of new drugs are also discussed including: tubulin, type 2 methionine aminopeptidase, polyamines, chitin synthases, topoisomerase IV, triosephosphate isomerase, and lipase. We also summarize reports on the utility of complementary and alternative medicine strategies including herbal extracts, propolis, and probiotics. This review should help facilitate drug development for combating microsporidiosis.
Collapse
Affiliation(s)
- Junhong Wei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Zhihui Fei
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Guoqing Pan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Zeyang Zhou
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China
- Key Laboratory for Sericulture Functional Genomics Biotechnology of Agricultural Ministry, Southwest University, Chongqing, China
- College of Life Sciences, Chongqing Normal University, Chongqing, China
| |
Collapse
|
2
|
Matoba A, Goosey J, Chévez-Barrios P. Microsporidial Stromal Keratitis: Epidemiological Features, Slit-Lamp Biomicroscopic Characteristics, and Therapy. Cornea 2021; 40:1532-1540. [PMID: 33782266 DOI: 10.1097/ico.0000000000002704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/18/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE Microsporidial stromal keratitis is a rare form of infectious keratitis, with only 7 cases reported in the United States to date. This study was performed to evaluate risk factors, clinical features, and response to therapy. METHODS A retrospective review of the medical records of all patients diagnosed with microsporidial stromal keratitis seen in the practices of the authors between 1999 and 2020 was performed. Diagnosis was determined by cytology or histopathology in corneal specimens. Risk factors, presence or absence of distinctive clinical features, and response to medical and surgical therapies were recorded. RESULTS Nine patients-7M:2F, aged 7 to 99 years-with microsporidial stromal keratitis were identified. Exposures to recreational water and hymenopteran insect bites, both epidemiologically linked risk factors for systemic microsporidial infection, were identified in our patients. Presence of stromal edema with features of disciform keratitis and a distinctive granular keratitis were observed in 6 of 9 and 5 of 9 patients, respectively. Poor response to medical therapy was noted. Penetrating keratoplasty was effective in curing the infection. Final visual acuity was 20/40 or better in 6 of 9 patients. CONCLUSIONS In patients with slowly progressive keratitis, history of exposure to recreational water or hymenopteran insects should be sought. In patients with corneal edema consistent with disciform keratitis, with evolution to a granular keratitis, microsporidia should be considered in the differential diagnosis. In cases of established microsporidial stromal keratitis, penetrating keratoplasty should be considered if prompt response to medical therapy is not noted.
Collapse
Affiliation(s)
- Alice Matoba
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
| | | | - Patricia Chévez-Barrios
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX; and
- Departments of Pathology and Laboratory Medicine, and Ophthalmology, Weill Medical College of Cornell University, New York City, NY
| |
Collapse
|
3
|
Abstract
Microsporidia are obligate intracellular pathogens identified ∼150 years ago as the cause of pébrine, an economically important infection in silkworms. There are about 220 genera and 1,700 species of microsporidia, which are classified based on their ultrastructural features, developmental cycle, host-parasite relationship, and molecular analysis. Phylogenetic analysis suggests that microsporidia are related to the fungi, being grouped with the Cryptomycota as a basal branch or sister group to the fungi. Microsporidia can be transmitted by food and water and are likely zoonotic, as they parasitize a wide range of invertebrate and vertebrate hosts. Infection in humans occurs in both immunocompetent and immunodeficient hosts, e.g., in patients with organ transplantation, patients with advanced human immunodeficiency virus (HIV) infection, and patients receiving immune modulatory therapy such as anti-tumor necrosis factor alpha antibody. Clusters of infections due to latent infection in transplanted organs have also been demonstrated. Gastrointestinal infection is the most common manifestation; however, microsporidia can infect virtually any organ system, and infection has resulted in keratitis, myositis, cholecystitis, sinusitis, and encephalitis. Both albendazole and fumagillin have efficacy for the treatment of various species of microsporidia; however, albendazole has limited efficacy for the treatment of Enterocytozoon bieneusi. In addition, immune restoration can lead to resolution of infection. While the prevalence rate of microsporidiosis in patients with AIDS has fallen in the United States, due to the widespread use of combination antiretroviral therapy (cART), infection continues to occur throughout the world and is still seen in the United States in the setting of cART if a low CD4 count persists.
Collapse
|
4
|
Dalhoff A. Selective toxicity of antibacterial agents-still a valid concept or do we miss chances and ignore risks? Infection 2021; 49:29-56. [PMID: 33367978 PMCID: PMC7851017 DOI: 10.1007/s15010-020-01536-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 10/04/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Selective toxicity antibacteribiotics is considered to be due to interactions with targets either being unique to bacteria or being characterized by a dichotomy between pro- and eukaryotic pathways with high affinities of agents to bacterial- rather than eukaryotic targets. However, the theory of selective toxicity oversimplifies the complex modes of action of antibiotics in pro- and eukaryotes. METHODS AND OBJECTIVE This review summarizes data describing multiple modes of action of antibiotics in eukaryotes. RESULTS Aminoglycosides, macrolides, oxazolidinones, chloramphenicol, clindamycin, tetracyclines, glycylcyclines, fluoroquinolones, rifampicin, bedaquillin, ß-lactams inhibited mitochondrial translation either due to binding to mitosomes, inhibition of mitochondrial RNA-polymerase-, topoisomerase 2ß-, ATP-synthesis, transporter activities. Oxazolidinones, tetracyclines, vancomycin, ß-lactams, bacitracin, isoniazid, nitroxoline inhibited matrix-metalloproteinases (MMP) due to chelation with zinc and calcium, whereas fluoroquinols fluoroquinolones and chloramphenicol chelated with these cations, too, but increased MMP activities. MMP-inhibition supported clinical efficacies of ß-lactams and daptomycin in skin-infections, and of macrolides, tetracyclines in respiratory-diseases. Chelation may have contributed to neuroprotection by ß-lactams and fluoroquinolones. Aminoglycosides, macrolides, chloramphenicol, oxazolidins oxazolidinones, tetracyclines caused read-through of premature stop codons. Several additional targets for antibiotics in human cells have been identified like interaction of fluoroquinolones with DNA damage repair in eukaryotes, or inhibition of mucin overproduction by oxazolidinones. CONCLUSION The effects of antibiotics on eukaryotes are due to identical mechanisms as their antibacterial activities because of structural and functional homologies of pro- and eukaryotic targets, so that the effects of antibiotics on mammals are integral parts of their overall mechanisms of action.
Collapse
Affiliation(s)
- Axel Dalhoff
- Christian-Albrechts-University of Kiel, Institue for Infection Medicine, Brunswiker Str. 4, D-24105, Kiel, Germany.
| |
Collapse
|
5
|
Khurana S, Sharma M. Parasitic keratitis - An under-reported entity. Trop Parasitol 2020; 10:12-17. [PMID: 32775286 PMCID: PMC7365502 DOI: 10.4103/tp.tp_84_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 01/12/2020] [Accepted: 01/20/2020] [Indexed: 11/04/2022] Open
Abstract
Parasitic keratitis (PK) is unique entity among parasitic infections where corneal involvement could result from direct inoculation of the parasite via exogenous environment or spread via endogenous neighboring organs or as a result of immune-mediated damage secondary to a systemic parasitic infection. Most cases of PK are caused by Acanthamoeba spp. and Microsporidia spp. though few other parasitic agents can also lead to corneal involvement. Mimicking as other infectious and non-infectious causes of keratitis, PK often escapes detection. This review summarizes the predominant causes of PK along with the epidemiological, clinical and microbiological details of each. Though several gaps exist in our understanding of the prevalence of PK, the one thing for sure is that PK is on the rise. With advanced diagnostic modalities and enough literature on optimal management of cases of PK, it is now imperative that a strong clinical suspicion of PK is kept when examining a case of corneal pathology and adequate investigations are ordered.
Collapse
Affiliation(s)
- Sumeeta Khurana
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Megha Sharma
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Abstract
INTRODUCTION Microsporidia have been increasingly reported to infect humans. The most common presentation of microsporidiosis is chronic diarrhea, a significant mortality risk in immune-compromised patients. Albendazole, which inhibits tubulin, and fumagillin, which inhibits methionine aminopeptidase type 2 (MetAP2), are the two main therapeutic agents used for treatment of microsporidiosis. In addition, to their role as emerging pathogens in humans, microsporidia are important pathogens in insects, aquaculture, and veterinary medicine. New therapeutic targets and therapies have become a recent focus of attention for medicine, veterinary, and agricultural use. Areas covered: Herein, we discuss the detection and symptoms of microsporidiosis in humans and the therapeutic targets that have been utilized for the design of new drugs for the treatment of this infection, including triosephosphate isomerase, tubulin, MetAP2, topoisomerase IV, chitin synthases, and polyamines. Expert opinion: Enterocytozoon bieneusi is the most common microsporidia in human infection. Fumagillin has a broader anti-microsporidian activity than albendazole and is active against both Ent. bieneusi and Encephaliozoonidae. Microsporidia lack methionine aminopeptidase type 1 and are, therefore, dependent on MetAP2, while mammalian cells have both enzymes. Thus, MetAP2 is an essential enzyme in microsporidia and new inhibitors of this pathway have significant promise as therapeutic agents.
Collapse
Affiliation(s)
- Bing Han
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Louis M. Weiss
- Department of Pathology, Division of Tropical Medicine and Parasitology, Albert Einstein College of Medicine, Bronx, NY 10461
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
7
|
Leroy J, Cornu M, Deleplancque AS, Bart A, Loridant S, Fréalle E, Dutoit E, Gaillot O, van Gool T, Puisieux F, Labalette P, Sendid B. Case Report: Ocular Microsporidiosis: Case in a Patient Returning from India and Review of the Literature. Am J Trop Med Hyg 2018; 99:90-93. [PMID: 29692301 DOI: 10.4269/ajtmh.18-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Microsporidia are protists close to the kingdom of fungi that may cause eye infections. Most cases are reported in Asia and affect both immunocompromised and immunocompetent patients. Here, we report a rare case of microsporidial keratoconjunctivitis in an immunocompetent French patient 3 weeks after returning from India. In our patient, Weber trichrome staining of conjunctival scrapings revealed rounded elements approximately 1-3 μm in size. Conventional polymerase chain reaction analysis by ribosomal RNA subunit sequencing showed 100% identity with Vittaforma corneae. Treatment by corneal debridement combined with fluoroquinolone eye drops allowed complete resolution of the lesions. Although rare, ocular microsporidiosis should be investigated in a patient who is native to Asia or has returned from an endemic area and presents with keratoconjunctivitis of undetermined etiology.
Collapse
Affiliation(s)
- Jordan Leroy
- Institut National de la Santé et de la Recherche Médicale, Unité 995-Lille Inflammation Research International Center, Fungal Associated Invasive & Inflammatory Diseases, Lille, France.,Service de Parasitologie-Mycologie, Lille University Hospital, Lille, France
| | - Marjorie Cornu
- Institut National de la Santé et de la Recherche Médicale, Unité 995-Lille Inflammation Research International Center, Fungal Associated Invasive & Inflammatory Diseases, Lille, France.,Service de Parasitologie-Mycologie, Lille University Hospital, Lille, France
| | | | - Aldert Bart
- Department of Medical Microbiology, Section Parasitology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Séverine Loridant
- Institut National de la Santé et de la Recherche Médicale, Unité 995-Lille Inflammation Research International Center, Fungal Associated Invasive & Inflammatory Diseases, Lille, France.,Service de Parasitologie-Mycologie, Lille University Hospital, Lille, France
| | - Emilie Fréalle
- Service de Parasitologie-Mycologie, Lille University Hospital, Lille, France
| | - Emmanuel Dutoit
- Service de Parasitologie-Mycologie, Lille University Hospital, Lille, France
| | - Olivier Gaillot
- Service de Bactériologie, Lille University Hospital, Lille, France
| | - Tom van Gool
- Department of Medical Microbiology, Section Parasitology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Pierre Labalette
- Service d'Ophtalmologie, Lille University Hospital, Lille, France
| | - Boualem Sendid
- Institut National de la Santé et de la Recherche Médicale, Unité 995-Lille Inflammation Research International Center, Fungal Associated Invasive & Inflammatory Diseases, Lille, France.,Service de Parasitologie-Mycologie, Lille University Hospital, Lille, France
| |
Collapse
|
8
|
Microsporidiosis in Vertebrate Companion Exotic Animals. J Fungi (Basel) 2015; 2:jof2010003. [PMID: 29376921 PMCID: PMC5753084 DOI: 10.3390/jof2010003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/07/2015] [Accepted: 12/18/2015] [Indexed: 11/17/2022] Open
Abstract
Veterinarians caring for companion animals may encounter microsporidia in various host species, and diagnosis and treatment of these fungal organisms can be particularly challenging. Fourteen microsporidial species have been reported to infect humans and some of them are zoonotic; however, to date, direct zoonotic transmission is difficult to document versus transit through the digestive tract. In this context, summarizing information available about microsporidiosis of companion exotic animals is relevant due to the proximity of these animals to their owners. Diagnostic modalities and therapeutic challenges are reviewed by taxa. Further studies are needed to better assess risks associated with animal microsporidia for immunosuppressed owners and to improve detection and treatment of infected companion animals.
Collapse
|
9
|
Azam A, Peerzada MN, Ahmad K. Parasitic diarrheal disease: drug development and targets. Front Microbiol 2015; 6:1183. [PMID: 26617574 PMCID: PMC4621754 DOI: 10.3389/fmicb.2015.01183] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/12/2015] [Indexed: 12/23/2022] Open
Abstract
Diarrhea is the manifestation of gastrointestinal infection and is one of the major causes of mortality and morbidity specifically among the children of less than 5 years age worldwide. Moreover, in recent years there has been a rise in the number of reports of intestinal infections continuously in the industrialized world. These are largely related to waterborne and food borne outbreaks. These occur by the pathogenesis of both prokaryotic and eukaryotic organisms like bacteria and parasites. The parasitic intestinal infection has remained mostly unexplored and under assessed in terms of therapeutic development. The lack of new drugs and the risk of resistance have led us to carry out this review on drug development for parasitic diarrheal diseases. The major focus has been depicted on commercially available drugs, currently synthesized active heterocyclic compounds and unique drug targets, that are vital for the existence and growth of the parasites and can be further exploited for the search of therapeutically active anti-parasitic agents.
Collapse
Affiliation(s)
- Amir Azam
- Medicinal Chemistry Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi, India
| | - Mudasir N. Peerzada
- Medicinal Chemistry Laboratory, Department of Chemistry, Jamia Millia IslamiaNew Delhi, India
| | - Kamal Ahmad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia IslamiaNew Delhi, India
| |
Collapse
|
10
|
Dalhoff A. Antiviral, antifungal, and antiparasitic activities of fluoroquinolones optimized for treatment of bacterial infections: a puzzling paradox or a logical consequence of their mode of action? Eur J Clin Microbiol Infect Dis 2015; 34:661-8. [PMID: 25515946 PMCID: PMC7087824 DOI: 10.1007/s10096-014-2296-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/02/2014] [Indexed: 12/19/2022]
Abstract
This review summarizes evidence that commercially available fluoroquinolones used for the treatment of bacterial infections are active against other non-bacterial infectious agents as well. Any of these fluoroquinolones exerts, in parallel to its antibacterial action, antiviral, antifungal, and antiparasitic actions at clinically achievable concentrations. This broad range of anti-infective activities is due to one common mode of action, i.e., the inhibition of type II topoisomerases or inhibition of viral helicases, thus maintaining the selective toxicity of fluoroquinolones inhibiting microbial topoisomerases at low concentrations but mammalian topoisomerases at much higher concentrations. Evidence suggests that standard doses of the fluoroquinolones studied are clinically effective against viral and parasitic infections, whereas higher doses administered topically were active against Candida spp. causing ophthalmological infections. Well-designed clinical studies should be performed to substantiate these findings.
Collapse
Affiliation(s)
- A Dalhoff
- Institute for Infection Medicine, University Medical Center Schleswig-Holstein, Brunswiker Str. 4, 24105, Kiel, Germany,
| |
Collapse
|
11
|
Sanjay S. Clinical trial of 0.02% polyhexamethylene biguanide versus placebo in the treatment of microsporidial keratoconjunctivitis. Am J Ophthalmol 2011; 151:183; author reply 183. [PMID: 21163375 DOI: 10.1016/j.ajo.2010.08.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Accepted: 08/18/2010] [Indexed: 11/26/2022]
|
12
|
Microsporidiosis: Epidemiology, clinical data and therapy. ACTA ACUST UNITED AC 2010; 34:450-64. [DOI: 10.1016/j.gcb.2010.07.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 06/22/2010] [Accepted: 07/05/2010] [Indexed: 11/19/2022]
|
13
|
Loh RS, Chan CM, Ti SE, Lim L, Chan KS, Tan DT. Emerging Prevalence of Microsporidial Keratitis in Singapore. Ophthalmology 2009; 116:2348-53. [DOI: 10.1016/j.ophtha.2009.05.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2008] [Revised: 05/01/2009] [Accepted: 05/06/2009] [Indexed: 11/29/2022] Open
|
14
|
Monaghan SR, Kent ML, Watral VG, Kaufman RJ, Lee LEJ, Bols NC. Animal cell cultures in microsporidial research: their general roles and their specific use for fish microsporidia. In Vitro Cell Dev Biol Anim 2009; 45:135-47. [PMID: 19184249 PMCID: PMC4760642 DOI: 10.1007/s11626-008-9172-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2008] [Accepted: 12/20/2008] [Indexed: 10/21/2022]
Abstract
The use of animal cell cultures as tools for studying the microsporidia of insects and mammals is briefly reviewed, along with an in depth review of the literature on using fish cell cultures to study the microsporidia of fish. Fish cell cultures have been used less often but have had some success. Very short-term primary cultures have been used to show how microsporidia spores can modulate the activities of phagocytes. The most successful microsporidia/fish cell culture system has been relatively long-term primary cultures of salmonid leukocytes for culturing Nucleospora salmonis. Surprisingly, this system can also support the development of Enterocytozoon bienusi, which is of mammalian origin. Some modest success has been achieved in growing Pseudoloma neurophilia on several different fish cell lines. The eel cell line, EP-1, appears to be the only published example of any fish cell line being permanently infected with microsporidia, in this case Heterosporis anguillarum. These cell culture approaches promise to be valuable in understanding and treating microsporidia infections in fish, which are increasingly of economic importance.
Collapse
Affiliation(s)
- S Richelle Monaghan
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | | | | | | | | | | |
Collapse
|
15
|
Johny S, Lange CE, Solter LF, Merisko A, Whitman DW. NEW INSECT SYSTEM FOR TESTING ANTIBIOTICS. J Parasitol 2007; 93:1505-11. [DOI: 10.1645/ge-1213.1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
16
|
Abstract
PURPOSE OF REVIEW Microsporidiosis is an emerging and opportunistic infection associated with a wide range of clinical syndromes in humans. This review highlights the research on microsporidiosis in humans during the previous 2 years. RECENT FINDINGS The reduced and compact microsporidian genome has generated much interest for better understanding the evolution of these parasites, and comparative molecular phylogenetic studies continue to support a relationship between the microsporidia and fungi. Through increased awareness and improved diagnostics, microsporidiosis has been identified in a broader range of human populations that, in addition to persons with HIV infection, includes travelers, children, organ transplant recipients, and the elderly. SUMMARY Effective commercial therapies for Enterocytozoon bieneusi, the most common microsporidian species identified in humans, are still lacking, making the need to develop tissue culture and small animal models increasingly urgent. Environmental transport modeling and disinfection strategies are being addressed for improving water safety. Questions still exist about whether microsporidia infections remain persistent in asymptomatic immune-competent individuals, reactivate during conditions of immune compromise, or may be transmitted to others at risk, such as during pregnancy or through organ donation. Reliable serological diagnostic methods are needed to supplement polymerase chain reaction or histochemistry when spore shedding may be sporadic.
Collapse
Affiliation(s)
- Elizabeth S Didier
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA.
| | | |
Collapse
|