1
|
Functional ultrastructure and cytochemistry of vitellogenesis stages of Rohdella amazonica (Aspidogastrea, Aspidogastridae, Rohdellinae), a parasite of the Amazoninan banded puffer fish Colomesus psittacus. ZOOL ANZ 2021. [DOI: 10.1016/j.jcz.2021.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
2
|
Świderski Z, Kacem H, Mackiewicz JS, Miquel J. Functional ultrastructure and cytochemistry of vitellogenesis and mature vitellocytes of the digenean Cainocreadium labracis (Dujardin, 1845), parasite of Dicentrarchus labrax (L., 1758). Parasitol Res 2018; 118:493-504. [PMID: 30588541 PMCID: PMC6349787 DOI: 10.1007/s00436-018-6180-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/11/2018] [Indexed: 11/26/2022]
Abstract
Vitellogenesis and vitellocytes of Cainocreadium labracis were studied by transmission electron microscopy (TEM) and TEM cytochemistry. Four developmental stages were distinguished during vitellogenesis: (I) stem cell of high nucleo-cytoplasmic ratio; (II) early differentiation with chief activity focused on the beginning of protein synthesis and shell globule formation; (III) advanced differentiation with rapid intensification of protein synthesis, progressive fusion of single shell globules into large globule clusters, and formation of unsaturated lipid droplets surrounded by β-glycogen particles; and (IV) mature vitellocyte. Early vitellogenesis with vitellocyte maturation consists of: (1) increase in cell volume; (2) increased development of large, parallel cisternae of GER with production of proteinaceous granules; (3) development of small Golgi complexes that package granules; and (4) within vacuoles, progressive enlargement of proteinaceous granules into shell globule clusters formed during vitellogenesis. Three types of inclusions accumulate in large amounts in mature vitelline cells: (1) shell globule clusters, important component in the formation of egg shell; (2) numerous unsaturated lipid droplets. Though fewer, there are also diphasic droplets consisting of saturated and unsaturated lipids in the same droplet, and (3) a relatively small amount of β-glycogen particles, usually surround a few groups of lipid droplets. The β-glycogen and lipid droplets are nutritive reserves for embryogenesis. General pattern and functional ultrastructure of vitellogenesis greatly resemble those observed in some lower cestodes, such as bothriocephalideans and diphyllobothrideans. Variations and differences in the amount of lipids and of glycogen during vitellogenesis in lower cestodes and other trematodes are compared and discussed.
Collapse
Affiliation(s)
- Zdzisław Świderski
- Witold Stefański Institute of Parasitology, Polish Academy of Sciences, 51/55 Twarda Street, 00-818, Warsaw, Poland.
| | - Hichem Kacem
- Laboratoire de Biodiversité et Ecosystèmes Aquatiques, Département des Sciences de la Vie, Faculté des Sciences de Sfax, BP 1171, 3000, Sfax, Tunisia
| | - John S Mackiewicz
- Department of Biological Sciences, University of New York at Albany, Albany, NY, 12222, USA
| | - Jordi Miquel
- Secció de Parasitologia, Departament de Biologia, Sanitat i Medi Ambient, Facultat de Farmàcia i Ciències de l'Alimentació, Universitat de Barcelona, Av. Joan XXIII, sn, 08028, Barcelona, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Av. Diagonal, 645, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Yoneva A, Kuchta R, Scholz T. First study of vitellogenesis of the broad fish tapeworm Diphyllobothrium latum (Cestoda, Diphyllobothriidea), a human parasite with extreme fecundity. Parasitol Int 2014; 63:747-53. [PMID: 25025756 DOI: 10.1016/j.parint.2014.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 06/11/2014] [Accepted: 07/05/2014] [Indexed: 10/25/2022]
Abstract
In the present study, the process of vitellogenesis of one of the most prolific organisms, the broad tapeworm, Diphyllobothrium latum, the causative agent of human diphyllobothriosis, was studied for the first time using transmission electron microscopy. Cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate for detection of glycogen was applied. Starting from the periphery toward the center of the vitelline follicle four stages of vitellocytes are differentiated: immature vitellocytes, early maturing vitellocytes, advanced maturing and mature vitellocytes. Differentiation into mature vitellocytes involves the formation of shell globule clusters containing shell globules, large amount of saturated lipid droplets and glycogen. A peculiar ultrastructural feature of D. latum vitellogenesis is the presence of lamellar bodies in the cytoplasm of mature vitellocytes. This feature is similar to that present in the closely related caryophyllideans and spathebothriideans. Despite the great similarity observed in the embryonic development of diphylobothriideans, caryophyllideans and spathebothriideans, and the fact that their vitellocytes share a feature not reported from other cestode groups, there are substantial differences in the morphology of vitelline clusters, types, amount and localization of their nutritive reserves.
Collapse
Affiliation(s)
- Aneta Yoneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Street, 1113 Sofia, Bulgaria; Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Roman Kuchta
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Tomáš Scholz
- Institute of Parasitology, Biology Centre of the Academy of Sciences of the Czech Republic, Branišovská 31, 370 05, České Budějovice, Czech Republic
| |
Collapse
|
4
|
Bruňanská M, Drobníková P, Mackiewicz JS, Nebesářová J. Cytocomposition of the vitellarium in Khawia sinensis Hsü, 1935 (Cestoda, Caryophyllidea, Lytocestidae): another caryophyllidean species with lamellar bodies and lipids. Parasitol Res 2013; 112:2703-11. [PMID: 23749090 DOI: 10.1007/s00436-013-3477-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 04/24/2013] [Indexed: 10/26/2022]
Abstract
The vitellarium of the invasive caryophyllidean tapeworm Khawia sinensis Hsü, 1935 from carp Cyprinus carpio L. was examined by means of transmission electron microscopy and cytochemical staining for glycogen with periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP). A vitellarium consists of numerous follicles of irregular size that are interconnected by a net of vitelline ducts. Vitelline follicles are composed of vitelline cells at various stages of development that are interconnected by interstitial tissue. Vitelline follicles are surrounded by a cytoplasmic sheath associated with an intercellular matrix. Extensive development of the granular endoplasmic reticulum and Golgi complexes are both involved in the production of shell globules/shell globule clusters and characterise cytodifferentiation of vitellocytes. Nuclear and nucleolar transformation lead to the formation and storage of intranuclear glycogen, a feature specific for the Caryophyllidea. Newly observed within the mature vitellocytes of Khawia sp. is the presence of lamellar bodies and a few lipid droplets. These cytoplasmic inclusions first occur in the mature cells within the follicles and persist in the vitelline cells within vitelloducts and intrauterine eggs. Two types of lamellar bodies are detected: regular lamellar-structured body and irregular lamellar-structured body. None of the lamellar bodies are membrane bound. Results of the present study indicate that the formation of lamellar bodies may be closely related to the endoplasmic reticulum or shell globule clusters. Some of the shell globule clusters are transformed into lamellar body clusters. Ultrastructural features of vitellocytes in K. sinensis are compared with those of other monopleuroid, polypleuroid, and strobilated cestodes.
Collapse
Affiliation(s)
- Magdaléna Bruňanská
- Institute of Parasitology, Slovak Academy of Sciences, Hlinkova 3, 040 01 Košice, Slovak Republic.
| | | | | | | |
Collapse
|
5
|
Ultrastructure of the vitellarium in the digeneans Phyllodistomum angulatum (Plagiorchiida, Gorgoderidae) and Azygia lucii (Strigeida, Azygiidae). Acta Parasitol 2012; 57:235-46. [PMID: 22875673 DOI: 10.2478/s11686-012-0030-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2012] [Indexed: 11/20/2022]
Abstract
Fine structural features of the vitellarium of two digeneans, Phyllodistomum angulatum and Azygia lucii, are documented and compared with those of other digenean species. The cytodifferentiation of immature vitelline cells (vitellocytes) assumes the production and subsequent accumulation in their cytoplasm of several inclusions. Mature vitelline cells of P. angulatum are characterized by the presence of vitelline clusters (∼2.7 μm in diameter, with ∼100 vitelline globules of ∼0.35 μm in diameter) and osmiophobic, saturated lipid droplets (∼2-3 μm in diameter), and in A. lucii vitelline clusters of the same diameter include much fewer vitelline globules (∼50 globules of ∼0.5 μm in diameter), osmiophilic lipid droplets and α-glycogen. In both P. angulatum and A. lucii, interstitial cells are also present within the vitellarium. Two types of contact sites (septate and tight junctions) between adjoining interstitial cells also occur in both digenean species. Judging from the present and previous ultrastructural studies, it is suggested that there are three potential discriminatory characters of the digenean vitellarium (the number of different types of cell components within the vitellarium, the presence and type of junctional complexes between these cells, and the isolation of the vitellarium from the surrounding tissue) which may prove useful for a better understanding of the biology and evolutionary history of the different digenean groups.
Collapse
|
6
|
Świderski Z, Miquel J, Marigo AM, Gibson DI. Ultrastructure of vitellogenesis and vitellocytes in the trypanorhynch cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax. C R Biol 2012; 335:573-84. [PMID: 23026088 DOI: 10.1016/j.crvi.2012.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 07/20/2012] [Accepted: 07/21/2012] [Indexed: 10/28/2022]
Abstract
This is the first TEM examination of vitellogenesis in the cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax and a member of a little-studied trypanorhynch family, the Aporhynchidae. The synthetic activity of vitellocytes plays two important functions in the developmental biology of cestodes: (1) their shell-globules serve in eggshell formation; and (2) their accumulated reserves of glycogen and lipids represent a food source for the developing embryo. In A. menezesi, vitelline follicles consist of cells at various stages of development, from peripheral, immature cells of the gonial type to mature cells towards the centre of the follicle. These stages are: (I) immature; (II) early differentiation; (III) advanced maturation; and (IV) mature. Gradual changes involved in this process occur within each stage. Vitellogenesis involves: (1) an increase in cell volume; (2) the development of a smooth endoplasmic reticulum and an accelerated formation and accumulation of both unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (3) the formation of individual β-glycogen particles and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; (4) the rapid accumulation of large, moderately saturated lipid droplets accompanied by dense accumulations of β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of maturation; (5) the development of cisternae of granular endoplasmic reticulum that produce dense, proteinaceous shell-globules; (6) the development of Golgi complexes engaged in the packaging of this material; and (7) the progressive and continuous enlargement of shell-globules into very large clusters in the peripheral layer during the advanced stage of maturation. Vitellogenesis in A. menezesi, only to some extent, resembles that previously described for four other trypanorhynchs. It differs in: (i) the reversed order of secretory activities in the differentiating vitellocytes, namely the accumulation of large lipid droplets accompanied by glycogenesis or β-glycogen formation during early differentiation (stage II), i.e. before the secretory activity, which is predominantly protein synthesis for shell-globule formation (stage III); (ii) the very heavy accumulation of large lipid droplets during the final stage of cytodifferentiation (stage IV); and (iii) the small number of β-glycogen particles present in mature vitellocytes. Ultracytochemical staining with PA-TCH-SP for glycogen proved positive for a small number of β-glycogen particles in differentiating and mature vitellocytes. Hypotheses, concerning the interrelationships of patterns of vitellogenesis, possible modes of egg formation, embryonic development and life-cycles, are commented upon.
Collapse
Affiliation(s)
- Zdzisław Świderski
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, 51/55 Twarda Street, 00-818 Warsaw, Poland.
| | | | | | | |
Collapse
|
7
|
Swiderski Z, Bakhoum AJS, Montoliu I, Feliu C, Gibson DI, Miquel J. Ultrastructural study of vitellogenesis in Maritrema feliui (Digenea, Microphallidae). Parasitol Res 2011; 109:1707-14. [PMID: 21573812 DOI: 10.1007/s00436-011-2444-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/03/2011] [Indexed: 11/29/2022]
Abstract
During vitellogenesis in the microphallid trematode Maritrema feliui, we distinguished four stages: (I) a stem cell stage of the gonial type; (II) an early differentiation stage with the main cell activity concentrated on the initiation of protein synthetic activity and the beginning of shell globule formation; (III) an advanced differentiation stage concentrated on a rapid intensification of protein synthetic activity, the progressive fusion of individual shell globules into large shell globule clusters and the formation of saturated lipid droplets and a small amount of β-glycogen particles in the peripheral cytoplasm, considered as a store of nutritive reserves for the developing embryos; and (IV) the mature vitellocyte. Early vitellocyte maturation is characterised by: (1) an increase in cell volume; (2) extensive development of large, labyrinth-like cisternae of GER that produce proteinaceous granules; (3) the development of Golgi complexes engaged in packaging this material; and (4) a continuous enlargement of proteinaceous granules within vacuoles and their transformation into shell globule clusters composed of the heterogeneous material observed during vitellocyte cytodifferentiation. Mature vitelline cells are very rich in two types of cell inclusions accumulated in large amounts in their cytoplasm: (1) shell globule clusters, which play an important role in eggshell formation; and (2) a few osmiophobic lipid droplets of a saturated nature that undoubtedly represent nutritive reserves for the developing embryos. In addition, there are small numbers of β-glycogen particles in the peripheral cytoplasm of mature vitellocytes of this species. The general pattern and ultrastructure of vitellogenesis in M. feliui greatly resembles those observed in another microphallid trematode, Maritrema linguilla, in other digeneans and in some lower cestodes. Quantitative and qualitative variations in lipids (saturated and unsaturated) and glycogen (α-glycogen rosettes and β-glycogen particles) during platyhelminth vitellogenesis between the different species of trematodes and some lower cestodes are identified and discussed.
Collapse
Affiliation(s)
- Zdzisław Swiderski
- W. Stefański Institute of Parasitology, Polish Academy of Sciences, 51/55 Twarda Street, 00-818 Warsaw, Poland.
| | | | | | | | | | | |
Collapse
|
8
|
Ultrastructure and cytochemistry of vitellogenesis and the vitellocytes of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (L., 1758) (Gadiformes, Merlucciidae). Acta Parasitol 2011. [DOI: 10.2478/s11686-011-0071-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractVitellogenesis and vitellocytes of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleost fish Merluccius merluccius (L., 1758), were studied by means of transmission electron microscopy (TEM) and cytochemistry. During vitellogenesis, four developmental stages were distinguished at the TEM level: (I) a stem cell stage of the gonial type; (II) an early differentiation stage, predominantly exhibiting lipid and protein synthetic activity; (III) an advanced differentiation or vitellocyte maturation stage, primarily exhibiting active glycogenesis still accompanied by an increase in lipid accumulation; and (IV) a mature vitellocyte stage. Vitellogenesis involves: (1) an increase in cell volume; (2) an extensive development of parallel, frequently concentrically arranged, cisternae of granular endoplasmic reticulum (GER) that produce dense, proteinaceous shell-gobules; (3) the development of Golgi complexes engaged in the packaging of this material; (4) an accelerated accumulation of unsaturated and saturated lipid droplets, along with their continuous enlargement and fusion; (5) the formation of individual β-glycogen particles and α-glycogen rosettes and their accumulation in the form of glycogen islands scattered among lipid droplets in the cytoplasm of maturing and mature vitellocytes; and (6) the rapid accumulation of large, saturated lipid droplets accompanied by dense accumulations of α- and β-glycogen along with proteinaceous shell-globules or shell-globule clusters in the peripheral layer during the advanced stage of vitellocyte maturation. Vitellogenesis in C. crassiceps generally resembles that previously described for three other bothriocephalideans, but differs from that of other cestode orders. Cytochemical staining with periodic acid-thiocarbazide-silver proteinate for glycogen indicates a strongly positive reaction for β-glycogen particles and α-glycogen rosettes, which form several large glycogen accumulations around the large, saturated lipid droplets of maturing and mature vitellocytes. Some hypotheses concerning the interrelationships between patterns of vitellogenesis, the possible modes of egg formation, embryonic development and life cycles in cestodes, and their phylogenetic implications are commented upon.
Collapse
|
9
|
Ultrastructural and cytochemical study on vitellogenesis in the diphyllidean cestode Echinobothrium euterpes (Echinobothriidae) and its phylogenetical implications. Acta Parasitol 2011. [DOI: 10.2478/s11686-011-0027-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractThe first description of vitellogenesis in the Diphyllidea is presented in this paper. Though the type of vitellogenesis and mature vitellocyte in Echinobothrium euterpes appear to be unique among the Eucestoda, however, they somewhat resemble that observed in the two orders of the lower cestodes, Tetraphyllidea and Proteocephalidea. Vitellocyte maturation is characterized by: (1) an increase in cell volume; (2) extensive development of short, parallel, frequently concentric cisternae of GER that produce dense proteinaceous granules; (3) development of Golgi complexes engaged in packaging this material; (4) progressive formation of saturated lipid droplets; their continuous enlargement and fusion; (5) formation of small accumulations of glycogen particles scattered between and among lipid droplets in the cytoplasm of maturing vitellocytes; (6) concentration of dense proteinaceous granules in the peripheral layer of cytoplasm, around the cell plasma membrane; and (7) vacuolization of cytoplasm of mature vitellocytes accompanied by a rapid increase in its volume. A new, unreported type of dense proteinaceous granules, situated around the limiting plasma membranes of mature vitellocytes, is described. Vitellogenesis evidently differs from that with typical shell-globules and shell-globule clusters previously reported in other taxa of lower cestodes. Cytochemical staining with periodic acidthiosemicarbazide-silver proteinate for glycogen indicates a strongly positive reaction for glycogen particles between and around large unsaturated lipid droplets of the maturing and mature vitellocytes. Some hypotheses concerning the interrelationship between this pattern of vitellogenesis, possible mode of egg formation, embryonic development and diphyllidean life cycle, and their phylogenetic implications are drawn and discussed.
Collapse
|
10
|
Levron C, Poddubnaya L, Oros M, Scholz T. Vitellogenesis of basal trematode Aspidogaster limacoides(Aspidogastrea: Aspidogastridae). Parasitol Int 2010; 59:532-8. [DOI: 10.1016/j.parint.2010.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 06/28/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
|
11
|
Vitellogenesis in the cestode Atractolytocestus huronensis Anthony, 1958 (Caryophyllidea: Lytocestidae). Parasitol Res 2009; 105:647-54. [DOI: 10.1007/s00436-009-1436-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 03/26/2009] [Indexed: 11/26/2022]
|
12
|
Ultrastructure and cytochemistry of vitellogenesis in Wenyonia virilis Woodland, 1923 (Cestoda, Caryophyllidea). Acta Parasitol 2009. [DOI: 10.2478/s11686-009-0028-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractVitellogenesis in Wenyonia virilis was examined by transmission electron microscopy (TEM), including the cytochemical detection of glycogen at the ultrastructural level with the periodic acid-thiosemicarbazide-silver proteinate (PA-TSC-SP) technique. Mature vitelline follicles have cells in various stages of development, progressing from immature cells of gonial type near the periphery of the follicle to maturing and mature vitellocytes towards the centre. Maturation is characterized by: (1) increase in cell volume; (2) increase in nuclear surface area restoring the N/C (nucleo-cytoplasmic) ratio; (3) nucleolar transformation; (4) extensive development of parallel cisternae of GER, the shell-protein producing units; (5) development of Golgi complexes, engaged in shell-granule/shell-globule formation and packaging; (6) synthesis and storage of glycogen in the cytoplasm; (7) simultaneous, independent formation and storage of intranuclear glycogen; (8) continuous fusion of small shell-granules into larger shell-globules and fusion of these into large shell-globule clusters with a progressive increase in the number and size of the latter; and (9) disintegration of GER in the medial layer of vitellocyte cytoplasm, degenerative changes and accumulation of glycogen and shell-globule clusters within the cytoplasm. The functional significance of numerous shell-globule clusters and the relatively small amount of nuclear and cytoplasmic glycogen is analysed. Unlike vitellogenesis of other caryophyllids, the nuclear glycogen of mature vitellocytes in W. virilis is randomly dispersed in the nucleoplasm and never forms a high central accumulation, the so-called “nuclear vacuole”. The nutritive function of vitellocytes appears greatly reduced in W. virilis, a fact perhaps related to the intrauterine development of the early embryos. The ultrastructure of vitellogenesis in W. virilis is compared with that in other lower cestodes, both monozoic and polyzoic. Conclusions concerning interrelationships of the vitellogenesis pattern of the ultrastructural cytochemistry of mature vitellocytes of W. virilis to intrauterine embryonation, absence of uterine glands and an extensive uterus characteristic for this species, are drawn and discussed.
Collapse
|
13
|
Conn DB, Swiderski Z. A standardised terminology of the embryonic envelopes and associated developmental stages of tapeworms (Platyhelminthes: Cestoda). Folia Parasitol (Praha) 2008; 55:42-52. [PMID: 18578166 DOI: 10.14411/fp.2008.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Over the past 40 years, much has been published on the ultrastructure and cellular development of embryonic structures in a wide range of cestodes. However, the literature contains many discrepancies in both terminology and interpretations because of the facts that these organisms are phylogenetically diverse within their respective orders and families, the habitats that affect embryonic envelope structure are diverse, and the work has been done in various laboratories around the world. This review and synthesis was initiated by a working group of biologists from around the world convened at the Fifth International Workshop on Cestode Systematics and Phylogeny in Ceské Budejovice, at the Institute of Parasitology of the Biology Centre, Academy of Sciences of the Czech Republic. It brings together the data from published work and establishes a uniform terminology and interpretation based on the data as they are presented. A consensus was reached for standardised definitions of the oncosphere, hexacanth, coracidium, embryonic envelopes, outer envelope, inner envelope, embryophore, vitelline capsule, shell, and outer coat. All of these are defined as components of the embryo or its vitellocyte-derived or uterine-derived coatings.
Collapse
Affiliation(s)
- David Bruce Conn
- School of Mathematical and Natural Sciences, Berry College, Mount Berry, Georgia 30149-5036, USA.
| | | |
Collapse
|
14
|
Abstract
The study of vitelline glands of digenean Haploporus lateralis, indicates that the glands consist of vitelocytes in various stages of maturation. The cytoplasmic process of nurse cells which surrounded the vitelline lobes, intrude between vitelocytes and surround them. Immature vitelline cells are undifferentiated, they possess small amount of cytoplasm and large nucleus. The synthesis of shell globules begin in the maturing vitelline cells. Increasing numbers of vitellocytes reach develop of mature vitelline cells. The cytoplasm of mature vitelline cells is filled with shell globules. Mature vitelline cells usually found in the center of vitelline lobe. They release into the vitelline duct and vitelline reservoir. The vitelline reservoir and duct are lined with a syncytial epithelium. Basement membrane is present between nurse cells and vitelline cells.
Collapse
Affiliation(s)
- Majid Sampour
- Department of Biology, University of Luristan, Khoramabad, Iran
| |
Collapse
|
15
|
Ultrastructural and cytochemical studies on vitellogenesis in the trypanorhynch cestode Parachristianella trygonis Dollfus, 1946 (Eutetrarhynchidae). Acta Parasitol 2007. [DOI: 10.2478/s11686-007-0020-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AbstractDuring vitellogenesis in Parachristianella trygonis Trypanorhyncha, Eutetrarhynchidae) we distinguished four stages: (1) gonial or stem cell stage; (2) early differentiation stage concentrated on protein synthetic activity and shell-globule formation; (3) advanced differentiation stage with main cell activity concentrated on carbohydrate synthesis (glycogenesis) and massive glycogen storage in the form of α-glycogen rosettes and β-glycogen particles; and finally (4) mature vitellocyte stage. Early vitellocyte maturation is characterised by: (1) an increase in cell volume; (2) extensive development of large, parallel cisternae of GER that produce proteinaceous granules; (3) development of Golgi complexes engaged in packaging this material; (4) continuous enlargement of proteinaceous granules within vacuoles and their transformation into shell-globule clusters composed of heterogeneous material. Cytochemical staining with periodic acid-thiosemicarbazide-silver proteinate for polysaccharides indicated a strongly positive reaction for the presence of α-glycogen rosettes and β-glycogen particles in the advanced stage of vitellocyte maturation. Both protein synthesis for shell-globule formation and carbohydrate synthesis or glycogenesis, important storage of nutritive reserves for the developing embryos, observed during cytodifferentiation of P. trygonis vitellocytes overlap in time to some extent. Mature vitelline cells are very rich in three types of cell inclusions accumulated in large amounts in their cytoplasm: (1) shell-globule clusters, playing an important role in egg-shell formation; (2) numerous large lipid droplets, as well as a high accumulation of lipid and α-glycogen rosettes and β-glycogen particles that undoubtedly represent important nutritive reserves for the developing embryos. Despite the fact that the type of vitellogenesis and ultrastructure of the mature vitellocyte in P. trygonis appears to differ to some extent from those of three other trypanorhynch species, its general pattern and ultrastructure greatly resembles those observed in other lower cestodes. Factors that may have contributed to the qualitative and quantitative variation in lipids during vitellogenesis among the four species of Trypanorhyncha, are identified and discussed.
Collapse
|