1
|
Chaturvedi R, Deora N, Bhandari D, Parvez S, Sinha A, Sharma A. Trends of neglected Plasmodium species infection in humans over the past century in India. One Health 2021; 11:100190. [PMID: 33251321 PMCID: PMC7683271 DOI: 10.1016/j.onehlt.2020.100190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Efforts for malaria elimination in India focus solely on the more prevalent human malaria parasites of Plasmodium falciparum (Pf) and Plasmodium vivax (Pv). The three non-Pf/Pv species - Plasmodium malariae (Pm), Plasmodium ovale (Po) and Plasmodium knowlesi (Pk) are seldom studied though they are often present as mixed infections with Pf/Pv and thus may be misdiagnosed. This study provides a comprehensive landscape of Pm, Po, and Pk infections from 1930 to 2020. METHODOLOGY We systematically searched for published literature on Pm, Po, and Pk in India from PubMed database and collated data from 35 studies. The data, starting from 1930, were mapped decade-wise across India. The prevalence of the three neglected Plasmodium species and their proportional contribution to reported Plasmodium mixed-infection were also calculated and analysed. PRINCIPAL FINDINGS Amongst the three non-Pf/Pv species, Pm infections have been reported in greater numbers across India and were mostly mono-infections till 1980. From 1983 onwards, reports of Pm mixed infections with Pf/Pv started to emerge. In contrast, reports on occurrence of Po are still rare barring few mixed infection studies. Further, Pk mono- and mixed cases were first reported in 2004 in India and Pk now has been found reported from four Indian states. CONCLUSION This is the first account of country-wide assimilation of reported malaria parasite species data that covers Pm, Po, and Pk infection profiles from 1930 to 2020. This study illustrates the need to survey all 5 human malaria parasite species in India and to target them collectively during the malaria elimination phase.
Collapse
Key Words
- ACT, Artemisinin-based combination therapy
- AL, Artemether-Lumefantrine
- AS, Artesunate
- CDC, Centres for Disease Control and Prevention
- DBS, Dried Blood Spots
- G6PD, Glucose-6-Phosphate Dehydrogenase.
- IV, intravenous
- LAMP, Loop-mediated isothermal amplification.
- Neglected Plasmodium species
- P. knowlesi
- P. malariae
- P. ovale
- PCR, Polymerase Chain Reaction
- POC, Point of Care,
- RDT, Rapid Diagnostic Tests
- SP, Sulfadoxine-Pyrimethamine
- malaria
Collapse
Affiliation(s)
- Rini Chaturvedi
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Nimita Deora
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Deepam Bhandari
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Suhel Parvez
- Department of Toxicology, Jamia Hamdard, New Delhi, India
| | - Abhinav Sinha
- ICMR-National Institute of Malaria Research, New Delhi, India
| | - Amit Sharma
- Molecular Medicine Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
- ICMR-National Institute of Malaria Research, New Delhi, India
| |
Collapse
|
2
|
Xie Y, Wu K, Cheng W, Jiang T, Yao Y, Xu M, Yang Y, Tan H, Li J. Molecular epidemiological surveillance of Africa and Asia imported malaria in Wuhan, Central China: comparison of diagnostic tools during 2011-2018. Malar J 2020; 19:321. [PMID: 32883296 PMCID: PMC7470674 DOI: 10.1186/s12936-020-03387-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 08/25/2020] [Indexed: 01/17/2023] Open
Abstract
Background Malaria remains a serious public health problem globally. As the elimination of indigenous malaria continues in China, imported malaria has gradually become a major health hazard. Well-timed and accurate diagnoses could support the timely implementation of therapeutic schedules, reveal the prevalence of imported malaria and avoid transmission of the disease. Methods Blood samples were collected in Wuhan, China, from August 2011 to December 2018. All patients accepted microscopy and rapid diagnosis test (RDT) examinations. Subsequently, each of the positive or suspected positive cases was tested for four human-infectious Plasmodium species by using 18S rRNA-based nested PCR and Taqman probe-based real-time PCR. The results of the microscopy and the two molecular diagnostic methods were analysed. Importation origins were traced by country, and the prevalence of Plasmodium species was analysed by year. Results A total of 296 blood samples, including 288 that were microscopy and RDT positive, 7 RDT and Plasmodium falciparum positive, and 1 suspected case, were collected and reanalysed. After application of the two molecular methods and sequencing, 291 cases including 245 P. falciparum, 15 Plasmodium vivax, 20 Plasmodium ovale, 6 Plasmodium malariae and 5 mixed infections (3 P. falciparum + P. ovale, 2 P. vivax + P. ovale) were confirmed. These patients had returned from Africa (95.53%) and Asia (4.47%). Although the prevalence displayed a small-scale fluctuation, the overall trend of the imported cases increased yearly. Conclusions These results emphasize the necessity of combined utilization of the four tools for malaria diagnosis in clinic and in field surveys of potential risk regions worldwide including Wuhan.
Collapse
Affiliation(s)
- Yiting Xie
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Kai Wu
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, 430015, People's Republic of China
| | - Weijia Cheng
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Tingting Jiang
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yi Yao
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Mingxing Xu
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, 430015, People's Republic of China
| | - Yan Yang
- Department of Schistosomiasis and Endemic Diseases, Wuhan City Center for Disease Prevention and Control, Wuhan, 430015, People's Republic of China
| | - Huabing Tan
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Jian Li
- Department of Human Parasitology, School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, 442000, People's Republic of China. .,Department of Infectious Diseases, Renmin Hospital, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|
3
|
Dhiman S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect Dis Poverty 2019; 8:14. [PMID: 30760324 PMCID: PMC6375178 DOI: 10.1186/s40249-019-0524-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 01/31/2019] [Indexed: 01/30/2023] Open
Abstract
Background Malaria causes significant morbidity and mortality each year. In the past few years, the global malaria cases have been declining and many endemic countries are heading towards malaria elimination. Nevertheless, reducing the number of cases seems to be easy than sustained elimination. Therefore to achieve the objective of complete elimination and maintaining the elimination status, it is necessary to assess the gains made during the recent years. Main text With inclining global support and World Health Organisation (WHO) efforts, the control programmes have been implemented effectively in many endemic countries. Given the aroused interest and investments into malaria elimination programmes at global level, the ambitious goal of elimination appears feasible. Sustainable interventions have played a pivotal role in malaria contraction, however drug and insecticide resistance, social, demographic, cultural and behavioural beliefs and practices, and unreformed health infrastructure could drift back the progress attained so far. Ignoring such impeding factors coupled with certain region specific factors may jeopardise our ability to abide righteous track to achieve global elimination of malaria parasite. Although support beyond the territories is important, but well managed integrated vector management approach at regional and country level using scrupulously selected area specific interventions targeting both vector and parasite along with the community involvement is necessary. A brief incline in malaria during 2016 has raised fresh perturbation on whether elimination could be achieved on time or not. Conclusions The intervention tools available currently can most likely reduce transmission but clearing of malaria epicentres from where the disease can flare up any time, is not possible without involving local population. Nevertheless maintaining zero malaria transmission and checks on malaria import in declared malaria free countries, and further speeding up of interventions to stop transmission in elimination countries is most desirable. Strong collaboration backed by adequate political and financial support among the countries with a common objective to eliminate malaria must be on top priority. The present review attempts to assess the progress gained in malaria elimination during the past few years and highlights some issues that could be important in successful malaria elimination. Electronic supplementary material The online version of this article (10.1186/s40249-019-0524-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sunil Dhiman
- Vector Management Division, Defence Research and Development Establishment, Gwalior, Madhya Pradesh, 474002, India.
| |
Collapse
|
4
|
Chourasia MK, Raghavendra K, Bhatt RM, Swain DK, Meshram HM, Meshram JK, Suman S, Dubey V, Singh G, Prasad KM, Kleinschmidt I. Additional burden of asymptomatic and sub-patent malaria infections during low transmission season in forested tribal villages in Chhattisgarh, India. Malar J 2017; 16:320. [PMID: 28789682 PMCID: PMC5549400 DOI: 10.1186/s12936-017-1968-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 08/03/2017] [Indexed: 11/27/2022] Open
Abstract
Background The burden of sub-patent malaria is difficult to recognize in low endemic areas due to limitation of diagnostic tools, and techniques. Polymerase chain reaction (PCR), a molecular based technique, is one of the key methods for detection of low parasite density infections. The study objective was to assess the additional burden of asymptomatic and sub-patent malaria infection among tribal populations inhabiting three endemic villages in Keshkal sub-district, Chhattisgarh, India. A cross-sectional survey was conducted in March–June 2016, during the low transmission season, to measure and compare prevalence of malaria infection using three diagnostics: rapid diagnostic test, microscopy and nested-PCR. Results Out of 437 individuals enrolled in the study, 103 (23.6%) were malaria positive by PCR and/or microscopy of whom 89.3% were Plasmodium falciparum cases, 77.7% were afebrile and 35.9% had sub-patent infections. Conclusions A substantial number of asymptomatic and sub-patent malaria infections were identified in the survey. Hence, strategies for identifying and reducing the hidden burden of asymptomatic and sub-patent infections should focus on forest rural tribal areas using more sensitive molecular diagnostic methods to curtail malaria transmission.
Collapse
Affiliation(s)
- Mehul Kumar Chourasia
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India
| | - Kamaraju Raghavendra
- National Institute of Malaria Research (ICMR), Sector-8, Dwarka, New Delhi, 110077, India.
| | - Rajendra M Bhatt
- National Institute of Malaria Research (ICMR), Field Unit, Lalpur, Raipur Chhattisgarh, India
| | - Dipak Kumar Swain
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India
| | - Hemraj M Meshram
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India
| | - Jayant K Meshram
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India
| | - Shrity Suman
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India
| | - Vinita Dubey
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India
| | - Gyanendra Singh
- National Institute of Malaria Research (ICMR) IIR-WHO Project, Field Unit, Kondagaon, Chhattisgarh, India
| | | | - Immo Kleinschmidt
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
5
|
Niño CH, Cubides JR, Camargo-Ayala PA, Rodríguez-Celis CA, Quiñones T, Cortés-Castillo MT, Sánchez-Suárez L, Sánchez R, Patarroyo ME, Patarroyo MA. Plasmodium malariae in the Colombian Amazon region: you don't diagnose what you don't suspect. Malar J 2016; 15:576. [PMID: 27899111 PMCID: PMC5129613 DOI: 10.1186/s12936-016-1629-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/21/2016] [Indexed: 11/10/2022] Open
Abstract
Background Malaria is a worldwide public health problem; parasites from the genus Plasmodium spp. are the aetiological agent of this disease. The parasite is mainly diagnosed by microscope-based techniques. However, these have limited sensitivity. Many asymptomatic infections are sub-microscopic and can only be detected by molecular methods. This study was aimed at comparing nested PCR results to those obtained by microscope for diagnosing malaria and to present epidemiological data regarding malaria in Colombia’s Amazon department. Methods A total of 1392 blood samples (taken by venepuncture) from symptomatic patients in Colombia’s Amazon department were analysed in parallel by thick blood smear (TBS) test and nested PCR for determining Plasmodium spp. infection and identifying infecting species, such as Plasmodium vivax, Plasmodium malariae and/or Plasmodium falciparum. Descriptive statistics were used for comparing the results from both tests regarding detection of the disease, typing infecting species and their prevalence in the study region. Bearing the microscope assay in mind as gold standard, PCR diagnosis performance was evaluated by statistical indicators. Conclusion The present study revealed great differences between both diagnostic tests, as well as suggesting high P. malariae prevalence from a molecular perspective. This differed profoundly from previous studies in this region of Colombia, usually based on the TBS test, suggesting that diagnosis by conventional techniques could lead to underestimating the prevalence of certain Plasmodium spp. having high circulation in this area. The present results highlight the need for modifying state malaria surveillance schemes for more efficient strategies regarding the detection of this disease in endemic areas. The importance of PCR as a back-up test in cases of low parasitaemia or mixed infection is also highlighted. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1629-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Carlos Hernando Niño
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Juan Ricardo Cubides
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Paola Andrea Camargo-Ayala
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | | | - Teódulo Quiñones
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Moisés Tomás Cortés-Castillo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Lizeth Sánchez-Suárez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia
| | - Ricardo Sánchez
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia.,School of Medicine, Universidad Nacional de Colombia, Avenida Carrera 30 # 45, Bogotá, Colombia
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia.,School of Medicine, Universidad Nacional de Colombia, Avenida Carrera 30 # 45, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Cra. 50 # 26-20, Bogotá, Colombia. .,School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24#63C-69, Bogotá, Colombia.
| |
Collapse
|
6
|
Kumar D, Dhiman S, Rabha B, Goswami D, Yadav K, Deka M, Veer V, Baruah I. Typing of Plasmodium falciparum DNA from 2 years old Giemsa-stained dried blood spots using nested polymerase chain reaction assay. Indian J Med Microbiol 2016; 34:210-2. [PMID: 27080775 DOI: 10.4103/0255-0857.176841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A panel of 129 Giemsa-stained thick blood spots (TBS) confirmed for Plasmodium falciparum infection having different levels of parasite density were collected from a malaria endemic area. DNA was extracted and nested polymerase chain reaction (PCR) assay was performed to amplify P. falciparum DNA. Nested PCR assay successfully amplified P. falciparum DNA at a very low parasitaemia of ~10 parasites/μl of blood. Current PCR assay is very simple and can be used retrospectively to monitor the invasion and prevalence of different Plasmodium species in endemic areas.
Collapse
Affiliation(s)
| | - S Dhiman
- Medical Entomology Division, Defence Research Laboratory, Tezpur, Assam, India
| | | | | | | | | | | | | |
Collapse
|
7
|
Dhiman S, Goswami D, Rabha B, Yadav K, Chattopadhyay P, Veer V. Absence of asymptomatic malaria in a cohort of 133 individuals in a malaria endemic area of Assam, India. BMC Public Health 2015; 15:919. [PMID: 26384971 PMCID: PMC4575429 DOI: 10.1186/s12889-015-2294-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 09/16/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria in northeast India affects children and adults annually. The number of malaria cases reported has declined over the past few years. Nevertheless, it is not clear whether there is an actual decline in parasitaemia or whether asymptomatic malaria infections are on the rise, especially in forested and forest-fringed areas. Asymptomatic malaria forms a parasite reservoir that acts as an epicentre for malaria spread during high-transmission season. Therefore it is important to understand the quantum of asymptomatic malaria infections among the vulnerable population. METHOD Four forest fringed historically malaria endemic villages were selected for the study. A total of 133 individuals without a fever history in the past four weeks were tested for malaria parasite using rapid diagnostic test (RDT), microscopy and polymerase chain reaction (PCR) assay during January - February 2014. Indoor resting Anopheles vectors were collected, identified and tested for sporozoite using VectorTest™ panel assay during October 2013 to March 2014, which is a low transmission season for malaria. Social and demographic data were recorded during the study. RESULTS Mean age (± SEM) of the participants was 16.1 ± 1.2 years (95 % CI: 13.8-18.4). All participants (100 %) reported to use mosquito nets. Altogether, 43.6 % of participants had education below primary level and only 9 % reported a travel history during the past four weeks. All RDT, microscopy and PCR assays were found negative indicating no asymptomatic malaria parasitaemia. Seven known malaria vector species namely, Anopheles nivipes, An. minimus, An. annularis, An. vagus, An. aconitus, An. philippinensis and An. culicifacies, were recorded in the present study. VectorTest™ sporozoite panel assay conducted on 45 pools (N = 224) of vector mosquitoes were found negative for Plasmodium sporozoite. DISCUSSION Northeastern states of India report asymptomatic malaria parasitemia along with high malaria transmission. An. minimus and An. dirus are recognised as efficient vectors, but An. culicifacies, An. philippinensis and An. annularis also play role in malaria transmission. Currently all participants were found negative for asymptomatic malaria, however the small sample size may restrict the scope of present results to the population living in more remote areas. CONCLUSION No cases of asymptomatic malaria infections parasitaemia was found in the present study conducted during a low transmission season indicating that asymptomatic malaria parasitaemia may not be prevalent in the region. Mosquito specimens were tested negative for the malaria sporozoites. Study findings encourage the ongoing malaria intervention efforts and recommends similar investigations in different ecological areas involving large populations.
Collapse
Affiliation(s)
- Sunil Dhiman
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Diganta Goswami
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Bipul Rabha
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Kavita Yadav
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Pronobesh Chattopadhyay
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| | - Vijay Veer
- Department of Medical Entomology, Defence Research Laboratory, Tezpur, Assam, India, 784 001.
| |
Collapse
|
8
|
Kumar D, Dhiman S, Rabha B, Goswami D, Deka M, Singh L, Baruah I, Veer V. Genetic polymorphism and amino acid sequence variation in Plasmodium falciparum GLURP R2 repeat region in Assam, India, at an interval of five years. Malar J 2014; 13:450. [PMID: 25416405 PMCID: PMC4256832 DOI: 10.1186/1475-2875-13-450] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 11/14/2014] [Indexed: 11/12/2022] Open
Abstract
Background The R2 repeat region of GLURP has been reported as a good genetic marker for Plasmodium falciparum genotyping. Proper knowledge of the extent and nature of P. falciparum genetic diversity using highly immunogenic R2 repeat region in malaria-endemic areas is a crucial element to understand various aspects related to immunity acquisition and disease pathogenesis. Methods Population diversity of P. falciparum GLURP and amino acid sequence repeats in GLURP R2 region was studied in malaria-endemic Assam state, northeast India and compared at an interval of five years during 2005 (Group-A) and 2011 (Group-B). Results Of the 66 samples, a total of 55 samples showed positive PCR bands for GLURP R2 region and altogether ten types of alleles with size ranging from 501 bp to 1,050 bp (50 bp bin) were observed and coded as genotypes I-X. In Group-A (n = 29), 24 samples were found infected with single, four with double and one with triple P. falciparum genotype, while in Group-B (n = 26), single genotype was found in 23 samples, double in two samples and triple in one sample. Genotype IV showed significant increase (p = 0.002) during 2011 (Group-B). Genotypes I to V were more common in Group-B (62%), however genotypes VI to X were more frequently distributed in Group-A. The expected heterozygosity was found slightly higher in Group-A (HE = 0.87) than Group-B (HE = 0.85), whereas multiplicity of infection (MOI) in Group-A (MOI = 1.21 ± 0.49) and Group-B (MOI = 1.12 ± 0.43) did not display significant variation. The amino acid repeat sequence unit (AAU) DKNEKGQHEIVEVEEILPE (called ‘a’) was more frequent in the well-conserved part of R2 repeat region. Conclusion The present study is the first extensive study in India which has generated substantial data for understanding the type and distribution of naturally evolved genetic polymorphism at amino acid sequence level in GLURP R2 repeat region in P. falciparum. There was decrease in the PCR amplicon size as well as the number of AAU [amino acid repeat unit] in Group-B displaying the bottleneck effect. The present study described a new type of AAU ‘d’ which varied from the other previous known AAUs. Electronic supplementary material The online version of this article (doi:10.1186/1475-2875-13-450) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Sunil Dhiman
- Medical Entomology Division, Defence Research Laboratory, Tezpur, Assam 784001, India.
| | | | | | | | | | | | | |
Collapse
|