1
|
Lakhani HA, Lizarzaburo Penafiel LS, Fakhoury M, Seide M, Duran S PX, See JW, Dhillon DK, Shah S, Khan AM, Nimmagadda M, Susmitha T, Rai M. Heart Transplantation and Left Ventricular Assist Devices: Long-Term Prognosis and Effects on Mental Health. Cureus 2024; 16:e68691. [PMID: 39371854 PMCID: PMC11452842 DOI: 10.7759/cureus.68691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Heart transplantation and left ventricular assist devices (LVADs) have emerged as crucial interventions for end-stage heart failure, dramatically improving patient outcomes. This narrative review examines their historical context, indications, procedures, and outcomes, as well as their impact on long-term survival, quality of life, functional status, and mental health. While heart transplantation remains the optimal treatment, donor scarcity limits its application. LVADs have become a viable alternative, either as a bridge to transplantation or as destination therapy. Both interventions demonstrate similar long-term survival rates and significant improvements in health-related quality of life and functional status. However, they present distinct long-term management challenges, including immunosuppression needs for transplant recipients and device-related issues for LVAD patients. Mental health effects are considerable, necessitating psychological support and adaptive coping strategies. Complications such as infection, bleeding, and thrombosis remain concerns for both interventions. Patient selection criteria, technological advancements, and long-term management strategies are critical factors in optimizing outcomes. Future research should focus on device miniaturization, enhanced biocompatibility, and less invasive insertion techniques to further advance these therapies and improve patient care in end-stage heart failure.
Collapse
Affiliation(s)
| | | | - Marc Fakhoury
- Cardiology, Saint Joseph University of Beirut, Beirut, LBN
| | - Melinda Seide
- Internal Medicine, St. George's University School of Medicine, St. George's, GRD
| | | | - Jia Whei See
- Internal Medicine, Universitas Sriwijaya, Kota Palembang, IDN
| | | | - Shivendra Shah
- Internal Medicine, Nepalgunj Medical College, Nepalgunj, NPL
| | | | | | | | - Manju Rai
- Biotechnology, Shri Venkateshwara University, Gajraula, IND
| |
Collapse
|
2
|
Dual SA, Cowger J, Roche E, Nayak A. The Future of Durable Mechanical Circulatory Support: Emerging Technological Innovations and Considerations to Enable Evolution of the Field. J Card Fail 2024; 30:596-609. [PMID: 38431185 DOI: 10.1016/j.cardfail.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 03/05/2024]
Abstract
The field of durable mechanical circulatory support (MCS) has undergone an incredible evolution over the past few decades, resulting in significant improvements in longevity and quality of life for patients with advanced heart failure. Despite these successes, substantial opportunities for further improvements remain, including in pump design and ancillary technology, perioperative and postoperative management, and the overall patient experience. Ideally, durable MCS devices would be fully implantable, automatically controlled, and minimize the need for anticoagulation. Reliable and long-term total artificial hearts for biventricular support would be available; and surgical, perioperative, and postoperative management would be informed by the individual patient phenotype along with computational simulations. In this review, we summarize emerging technological innovations in these areas, focusing primarily on innovations in late preclinical or early clinical phases of study. We highlight important considerations that the MCS community of clinicians, engineers, industry partners, and venture capital investors should consider to sustain the evolution of the field.
Collapse
Affiliation(s)
- Seraina A Dual
- KTH Royal Institute of Technology, Department of Biomedical Engineering and Health Systems, Stockholm, Sweden
| | | | - Ellen Roche
- Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Aditi Nayak
- Baylor University Medical Center, Dallas, Texas.
| |
Collapse
|