1
|
Phelps DW, Connors AM, Ferrero G, DeWitt JC, Yoder JA. Per- and polyfluoroalkyl substances alter innate immune function: evidence and data gaps. J Immunotoxicol 2024; 21:2343362. [PMID: 38712868 PMCID: PMC11249028 DOI: 10.1080/1547691x.2024.2343362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a large class of compounds used in a variety of processes and consumer products. Their unique chemical properties make them ubiquitous and persistent environmental contaminants while also making them economically viable and socially convenient. To date, several reviews have been published to synthesize information regarding the immunotoxic effects of PFASs on the adaptive immune system. However, these reviews often do not include data on the impact of these compounds on innate immunity. Here, current literature is reviewed to identify and incorporate data regarding the effects of PFASs on innate immunity in humans, experimental models, and wildlife. Known mechanisms by which PFASs modulate innate immune function are also reviewed, including disruption of cell signaling, metabolism, and tissue-level effects. For PFASs where innate immune data are available, results are equivocal, raising additional questions about common mechanisms or pathways of toxicity, but highlighting that the innate immune system within several species can be perturbed by exposure to PFASs. Recommendations are provided for future research to inform hazard identification, risk assessment, and risk management practices for PFASs to protect the immune systems of exposed organisms as well as environmental health.
Collapse
Affiliation(s)
- Drake W. Phelps
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
| | - Ashley M. Connors
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
| | - Giuliano Ferrero
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
| | - Jamie C. DeWitt
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR
| | - Jeffrey A. Yoder
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC
- Center for Environmental and Health Effects of PFAS, North Carolina State University, Raleigh, NC
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC
- Toxicology Program, North Carolina State University, Raleigh, NC
- Genetics and Genomics Academy, North Carolina State University, Raleigh, NC
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC
| |
Collapse
|
2
|
Bianchi E, Bhattacharya B, Bowling AJ, Pence HE, Mundy PC, Jones G, Muriana A, Grever WE, Pappas-Garton A, Sriram S, LaRocca J, Bondesson M. Applications of Zebrafish Embryo Models to Predict Developmental Toxicity for Agrochemical Product Development. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18132-18145. [PMID: 39087946 DOI: 10.1021/acs.jafc.4c00970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The development of safe crop protection products is a complex process that traditionally relies on intensive animal use for hazard identification. Methods that capture toxicity in early stages of agrochemical discovery programs enable a more efficient and sustainable product development pipeline. Here, we explored whether the zebrafish model can be leveraged to identify mammalian-relevant toxicity. We used transgenic zebrafish to assess developmental toxicity following exposures to known mammalian teratogens and captured larval morphological malformations, including bone and vascular perturbations. We further applied toxicogenomics to identify common biomarker signatures of teratogen exposure. The results show that the larval malformation assay predicted teratogenicity with 82.35% accuracy, 87.50% specificity, and 77.78% sensitivity. Similar and slightly lower accuracies were obtained with the vascular and bone assays, respectively. A set of 20 biomarkers were identified that efficiently segregated teratogenic chemicals from nonteratogens. In conclusion, zebrafish are valuable, robust, and cost-effective models for toxicity testing in the early stages of product development.
Collapse
Affiliation(s)
- Enrica Bianchi
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | | | - Heather E Pence
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Paige C Mundy
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Gabe Jones
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | | | | | | | | | - Jessica LaRocca
- Corteva Agriscience, Indianapolis, Indiana 46268, United States
| | - Maria Bondesson
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, Indiana 47408, United States
| |
Collapse
|
3
|
Mesmar F, Muhsen M, Farooq I, Maxey G, Tourigny JP, Tennessen J, Bondesson M. Exposure to the pesticide tefluthrin causes developmental neurotoxicity in zebrafish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596249. [PMID: 38854095 PMCID: PMC11160659 DOI: 10.1101/2024.05.28.596249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
BACKGROUND The insecticide tefluthrin is widely used in agriculture, resulting in widespread pollution. Tefluthrin is a type I pyrethroid characterized by its high persistence in the environment. Understanding the mechanisms of toxicity of tefluthrin will improve its risk assessment. OBJECTIVES We aimed to decipher the molecular modes of action of tefluthrin. METHODS Phenotypic developmental toxicity was assessed by exposing zebrafish embryos and larvae to increasing concentrations of tefluthrin. Tg(mnx:mGFP) line was used to assess neurotoxicity. Multi-omics approaches including transcriptomics and lipidomics were applied to analyze RNA and lipid contents, respectively. Finally, an in-silico ligand-protein docking computational method was used to study a possible interaction between tefluthrin and a protein target. RESULTS Tefluthrin exposure caused severe morphological malformations in zebrafish larvae, including motor neuron abnormalities. The differentially expressed genes were associated with neurotoxicity and metabolic disruption. Lipidomics analysis revealed a disruption in fatty acid, phospholipid, and lysophospholipid recycling. Protein docking modeling suggested that the LPCAT3 enzyme, which recycles lysophospholipids in the Land's cycle, directly interacts with tefluthrin. CONCLUSIONS Tefluthrin exposure causes morphological and neuronal malformations in zebrafish larvae at nanomolar concentrations. Multi-omics results revealed a potential molecular initiating event i.e., inhibition of LPCAT3, and key events i.e., an altered lysophospholipid to phospholipid ratio, leading to the adverse outcomes of neurotoxicity and metabolic disruption.
Collapse
|
4
|
Lovin LM, Scarlett KR, Henke AN, Sims JL, Brooks BW. Experimental arena size alters larval zebrafish photolocomotor behaviors and influences bioactivity responses to a model neurostimulant. ENVIRONMENT INTERNATIONAL 2023; 177:107995. [PMID: 37329757 DOI: 10.1016/j.envint.2023.107995] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/18/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
Zebrafish behavior is increasingly common in biomedical and environmental studies of chemical bioactivity. Multiple experimental arena sizes have been used to measure photolocomotion in zebrafish depending on age, endpoints observed, and instrumentation, among other factors. However, the extent to which methodological parameters may influence naïve behavioral performance and detection of behavioral changes is poorly understood. Here we measured photolocomotion and behavioral profiles of naïve larval zebrafish across arena sizes. We then performed concentration response studies with the model neurostimulant caffeine, again across various arena dimensions. We found total swimming distance of unexposed fish to increase logarithmically with arena size, which as related to circumference, area, and volume. Photomotor response during light/dark transitions also increased with arena size. Following caffeine exposure, total distance travelled was significantly (p < 0.001) affected by well size, caffeine treatment (p < 0.001), and the interaction of these two experimental factors (p < 0.001). In addition, behavioral response profiles showed differences between 96 well plates and larger well sizes. Biphasic response, with stimulation at lower concentrations and refraction at the highest concentration, was observed in dark conditions for the 96 well size only, though almost no effects were identified in the light. However, swimming behavior was significantly (p < 0.1) altered in the highest studied caffeine treatment level in larger well sizes during both light and dark periods. Our results indicate zebrafish swim more in larger arenas and arena size influences behavioral response profiles to caffeine, though differences were mostly observed between very small and large arenas. Further, careful consideration should be given when choosing arena size, because small wells may lead to restriction, while larger wells may differentially reflect biologically relevant effects. These findings can improve comparability among experimental designs and demonstrates the importance of understanding confounding methodological variables.
Collapse
Affiliation(s)
- Lea M Lovin
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Kendall R Scarlett
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Abigail N Henke
- Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA; Department of Biology, Baylor University, Waco, TX, USA
| | - Jaylen L Sims
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA
| | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, TX, USA; Center for Research and Aquatic Systems Research, Baylor University, Waco, TX, USA.
| |
Collapse
|
5
|
Liu Y, Chen L, Yu J, Ye L, Hu H, Wang J, Wu B. Advances in Single-Cell Toxicogenomics in Environmental Toxicology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11132-11145. [PMID: 35881918 DOI: 10.1021/acs.est.2c01098] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The toxicity evaluation system of environmental pollutants has undergone numerous changes due to the application of new technologies. Single-cell toxicogenomics is rapidly changing our view on environmental toxicology by increasing the resolution of our analysis to the level of a single cell. Applications of this technology in environmental toxicology have begun to emerge and are rapidly expanding the portfolio of existing technologies and applications. Here, we first summarized different methods involved in single-cell isolation and amplification in single-cell sequencing process, compared the advantages and disadvantages of different methods, and analyzed their development trends. Then, we reviewed the main advances of single-cell toxicogenomics in environmental toxicology, emphatically analyzed the application prospects of this technology in identifying the target cells of pollutants in early embryos, clarifying the heterogeneous response of cell subtypes to pollutants, and finding pathogenic bacteria in unknown microbes, and highlighted the unique characteristics of this approach with high resolution, high throughput, and high specificity by examples. We also offered a prediction of the further application of this technology and the revolution it brings in environmental toxicology. Overall, these advances will provide practical solutions for controlling or mitigating exogenous toxicological effects that threaten human and ecosystem health, contribute to improving our understanding of the physiological processes affected by pollutants, and lead to the emergence of new methods of pollution control.
Collapse
Affiliation(s)
- Yuxuan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Ling Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jing Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Lin Ye
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Haidong Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Jinfeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, PR China
| |
Collapse
|
6
|
Thessen AE, Marvel S, Achenbach JC, Fischer S, Haendel MA, Hayward K, Klüver N, Könemann S, Legradi J, Lein P, Leong C, Mylroie JE, Padilla S, Perone D, Planchart A, Prieto RM, Muriana A, Quevedo C, Reif D, Ryan K, Stinckens E, Truong L, Vergauwen L, Vom Berg C, Wilbanks M, Yaghoobi B, Hamm J. Implementation of Zebrafish Ontologies for Toxicology Screening. FRONTIERS IN TOXICOLOGY 2022; 4:817999. [PMID: 35387429 PMCID: PMC8979167 DOI: 10.3389/ftox.2022.817999] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 01/16/2023] Open
Abstract
Toxicological evaluation of chemicals using early-life stage zebrafish (Danio rerio) involves the observation and recording of altered phenotypes. Substantial variability has been observed among researchers in phenotypes reported from similar studies, as well as a lack of consistent data annotation, indicating a need for both terminological and data harmonization. When examined from a data science perspective, many of these apparent differences can be parsed into the same or similar endpoints whose measurements differ only in time, methodology, or nomenclature. Ontological knowledge structures can be leveraged to integrate diverse data sets across terminologies, scales, and modalities. Building on this premise, the National Toxicology Program’s Systematic Evaluation of the Application of Zebrafish in Toxicology undertook a collaborative exercise to evaluate how the application of standardized phenotype terminology improved data consistency. To accomplish this, zebrafish researchers were asked to assess images of zebrafish larvae for morphological malformations in two surveys. In the first survey, researchers were asked to annotate observed malformations using their own terminology. In the second survey, researchers were asked to annotate the images from a list of terms and definitions from the Zebrafish Phenotype Ontology. Analysis of the results suggested that the use of ontology terms increased consistency and decreased ambiguity, but a larger study is needed to confirm. We conclude that utilizing a common data standard will not only reduce the heterogeneity of reported terms but increases agreement and repeatability between different laboratories. Thus, we advocate for the development of a zebrafish phenotype atlas to help laboratories create interoperable, computable data.
Collapse
Affiliation(s)
- Anne E. Thessen
- Center for Health AI, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Anne E. Thessen,
| | - Skylar Marvel
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - J. C. Achenbach
- Aquatic and Crop Resource Development Research Center, National Research Council of Canada, Halifax, NS, Canada
| | | | - Melissa A. Haendel
- Center for Health AI, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Kimberly Hayward
- Department of Environmental and Molecular Toxicology and the Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Nils Klüver
- Department Bioanalytical Ecotoxicology, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany
| | - Sarah Könemann
- Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Jessica Legradi
- Environment & Health, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Pamela Lein
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States
| | - Connor Leong
- Department of Environmental and Molecular Toxicology and the Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - J. Erik Mylroie
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, United States
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States
| | - Dante Perone
- Department of Environmental and Molecular Toxicology and the Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Antonio Planchart
- Center for Human Health and the Environment, and Center for Environmental and Health Effects of PFAS, Biological Sciences, NC State University, Raleigh, NC, United States
| | | | | | | | - David Reif
- Department of Biological Sciences, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, United States
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Evelyn Stinckens
- Zebrafishlab, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology and the Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lucia Vergauwen
- Zebrafishlab, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Colette Vom Berg
- Environmental Toxicology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Mitch Wilbanks
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, United States
| | - Bianca Yaghoobi
- Department of Molecular Biosciences, University of California, Davis, Davis, CA, United States
| | - Jon Hamm
- Integrated Laboratory Systems, LLC, Contractor supporting the National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
7
|
Bauer B, Mally A, Liedtke D. Zebrafish Embryos and Larvae as Alternative Animal Models for Toxicity Testing. Int J Mol Sci 2021; 22:13417. [PMID: 34948215 PMCID: PMC8707050 DOI: 10.3390/ijms222413417] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/07/2023] Open
Abstract
Prerequisite to any biological laboratory assay employing living animals is consideration about its necessity, feasibility, ethics and the potential harm caused during an experiment. The imperative of these thoughts has led to the formulation of the 3R-principle, which today is a pivotal scientific standard of animal experimentation worldwide. The rising amount of laboratory investigations utilizing living animals throughout the last decades, either for regulatory concerns or for basic science, demands the development of alternative methods in accordance with 3R to help reduce experiments in mammals. This demand has resulted in investigation of additional vertebrate species displaying favourable biological properties. One prominent species among these is the zebrafish (Danio rerio), as these small laboratory ray-finned fish are well established in science today and feature outstanding biological characteristics. In this review, we highlight the advantages and general prerequisites of zebrafish embryos and larvae before free-feeding stages for toxicological testing, with a particular focus on cardio-, neuro, hepato- and nephrotoxicity. Furthermore, we discuss toxicokinetics, current advances in utilizing zebrafish for organ toxicity testing and highlight how advanced laboratory methods (such as automation, advanced imaging and genetic techniques) can refine future toxicological studies in this species.
Collapse
Affiliation(s)
- Benedikt Bauer
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Angela Mally
- Institute of Pharmacology and Toxicology, Julius-Maximilians-University, 97078 Würzburg, Germany; (B.B.); (A.M.)
| | - Daniel Liedtke
- Institute of Human Genetics, Julius-Maximilians-University, 97074 Würzburg, Germany
| |
Collapse
|
8
|
Phelps DW, Fletcher AA, Rodriguez-Nunez I, Balik-Meisner MR, Tokarz DA, Reif DM, Germolec DR, Yoder JA. In vivo assessment of respiratory burst inhibition by xenobiotic exposure using larval zebrafish. J Immunotoxicol 2021; 17:94-104. [PMID: 32407153 DOI: 10.1080/1547691x.2020.1748772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Currently, assessment of the potential immunotoxicity of a given agent involves a tiered approach for hazard identification and mechanistic studies, including observational studies, evaluation of immune function, and measurement of susceptibility to infectious and neoplastic diseases. These studies generally use costly low-throughput mammalian models. Zebrafish, however, offer an excellent alternative due to their rapid development, ease of maintenance, and homology to mammalian immune system function and development. Larval zebrafish also are a convenient model to study the innate immune system with no interference from the adaptive immune system. In this study, a respiratory burst assay (RBA) was utilized to measure reactive oxygen species (ROS) production after developmental xenobiotic exposure. Embryos were exposed to non-teratogenic doses of chemicals and at 96 h post-fertilization, the ability to produce ROS was measured. Using the RBA, 12 compounds with varying immune-suppressive properties were screened. Seven compounds neither suppressed nor enhanced the respiratory burst; five reproducibly suppressed global ROS production, but with varying potencies: benzo[a]pyrene, 17β-estradiol, lead acetate, methoxychlor, and phenanthrene. These five compounds have all previously been reported as immunosuppressive in mammalian innate immunity assays. To evaluate whether the suppression of ROS by these compounds was a result of decreased immune cell numbers, flow cytometry with transgenic zebrafish larvae was used to count the numbers of neutrophils and macrophages after chemical exposure. With this assay, benzo[a]pyrene was found to be the only chemical that induced a change in the number of immune cells by increasing macrophage but not neutrophil numbers. Taken together, this work demonstrates the utility of zebrafish larvae as a vertebrate model for identifying compounds that impact innate immune function at non-teratogenic levels and validates measuring ROS production and phagocyte numbers as metrics for monitoring how xenobiotic exposure alters the innate immune system.
Collapse
Affiliation(s)
- Drake W Phelps
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA
| | - Ashley A Fletcher
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Ivan Rodriguez-Nunez
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | | | - Debra A Tokarz
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - David M Reif
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Dori R Germolec
- National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jeffrey A Yoder
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA.,Comparative Medicine Institute, North Carolina State University, Raleigh, NC, USA.,Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
9
|
Abstract
The industry is increasingly relying on fish for toxicity assessment. However, current guidelines for toxicity assessment focus on teratogenicity and mortality. From an ecotoxicological point of view, however, these endpoints may not reflect the “full picture” of possible deleterious effects that can nonetheless result in decreased fitness and/or inability to adapt to a changing environment, affecting whole populations. Therefore, assessing sublethal effects add relevant data covering different aspects of toxicity at different levels of analysis. The impacts of toxicants on neurobehavioral function have the potential to affect many different life-history traits, and are easier to assess in the laboratory than in the wild. We propose that carefully-controlled laboratory experiments on different behavioral domains—including anxiety, aggression, and exploration—can increase our understanding of the ecotoxicological impacts of contaminants, since these domains are related to traits such as defense, sociality, and reproduction, directly impacting life-history traits. The effects of selected contaminants on these tests are reviewed, focusing on larval and adult zebrafish, showing that these behavioral domains are highly sensitive to small concentrations of these substances. These strategies suggest a way forward on ecotoxicological research using fish.
Collapse
|
10
|
Balik-Meisner MR, Mav D, Phadke DP, Everett LJ, Shah RR, Tal T, Shepard PJ, Merrick BA, Paules RS. Development of a Zebrafish S1500+ Sentinel Gene Set for High-Throughput Transcriptomics. Zebrafish 2019; 16:331-347. [PMID: 31188086 PMCID: PMC6685209 DOI: 10.1089/zeb.2018.1720] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Sentinel gene sets have been developed with the purpose of maximizing the information from targeted transcriptomic platforms. We recently described the development of an S1500+ sentinel gene set, which was built for the human transcriptome, utilizing a data- and knowledge-driven hybrid approach to select a small subset of genes that optimally capture transcriptional diversity, correlation with other genes based on large-scale expression profiling, and known pathway annotation within the human genome. While this detailed bioinformatics approach for gene selection can in principle be applied to other species, the reliability of the resulting gene set depends on availability of a large body of transcriptomics data. For the model organism zebrafish, we aimed to create a similar sentinel gene set (Zf S1500+ gene set); however, there is insufficient standardized expression data in the public domain to train the gene correlation model. Therefore, our strategy was to use human-zebrafish ortholog mapping of the human S1500+ genes and nominations from experts in the zebrafish scientific community. In this study, we present the bioinformatics curation and refinement process to produce the final Zf S1500+ gene set, explore whole transcriptome extrapolation using this gene set, and assess pathway-level inference. This gene set will add value to targeted high-throughput transcriptomics in zebrafish for toxicogenomic screening and other research domains.
Collapse
Affiliation(s)
| | - Deepak Mav
- Sciome, LLC, Research Triangle Park, North Carolina
| | | | | | | | - Tamara Tal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | | | - B. Alex Merrick
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Richard S. Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
11
|
Quevedo C, Behl M, Ryan K, Paules RS, Alday A, Muriana A, Alzualde A. Detection and Prioritization of Developmentally Neurotoxic and/or Neurotoxic Compounds Using Zebrafish. Toxicol Sci 2019; 168:225-240. [PMID: 30521027 PMCID: PMC6390653 DOI: 10.1093/toxsci/kfy291] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The standard methods for toxicity testing using rodent models cannot keep pace with the increasing number of chemicals in our environment due to time and resource limitations. Hence, there is an unmet need for fast, sensitive, and cost-effective alternate models to reliably predict toxicity. As part of Tox21 Phase III's effort, a 90-compound library was created and made available to researchers to screen for neurotoxicants using novel technology and models. The chemical library was evaluated in zebrafish in a dose-range finding test for embryo-toxicity (ie, mortality or morphological alterations induced by each chemical). In addition, embryos exposed to the lowest effect level and nonobservable effect level were used to measure the internal concentration of the chemicals within the embryos by bioanalysis. Finally, considering the lowest effect level as the highest testing concentration, a functional assay was performed based on locomotor activity alteration in response to light-dark changes. The quality control chemicals included in the library, ie, negative controls and replicated chemicals, indicate that the assays performed were reliable. The use of analytical chemistry pointed out the importance of measuring chemical concentration inside embryos, and in particular, in the case of negative chemicals to avoid false negative classification. Overall, the proposed approach presented a good sensitivity and supports the inclusion of zebrafish assays as a reliable, relevant, and efficient screening tool to identify, prioritize, and evaluate chemical toxicity.
Collapse
Affiliation(s)
- Celia Quevedo
- *Biobide, Donostia-San Sebastián, 20009 Gipuzkoa, Spain
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | - Richard S Paules
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences,Research Triangle Park, 27709 North Carolina
| | | | | | | |
Collapse
|
12
|
Ideraabdullah FY, Belenchia AM, Rosenfeld CS, Kullman SW, Knuth M, Mahapatra D, Bereman M, Levin ED, Peterson CA. Maternal vitamin D deficiency and developmental origins of health and disease (DOHaD). J Endocrinol 2019; 241:JOE-18-0541.R2. [PMID: 30909167 PMCID: PMC6717694 DOI: 10.1530/joe-18-0541] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 03/19/2019] [Indexed: 12/14/2022]
Abstract
Vitamin D is an essential nutrient that is metabolized in the body to generate an active metabolite (1,25(OH)2D) with hormone-like activity and highly diverse roles in cellular function. Vitamin D deficiency (VDD) is a prevalent but easily preventable nutritional disturbance. Emerging evidence demonstrates the importance of sufficient vitamin D concentrations during fetal life with deficiencies leading to long-term effects into adulthood. Here, we provide a detailed review and perspective of evidence for the role of maternal VDD in offspring long term health, particularly as it relates to Developmental Origins of Health and Disease (DOHaD). We focus on roles in neurobehavioral and cardiometabolic disorders in humans and highlight recent findings from zebrafish and rodent models that probe potential mechanisms linking early life VDD to later life health outcomes. Moreover, we explore evidence implicating epigenetic mechanisms as a mediator of this link. Gaps in our current understanding of how maternal VDD might result in deleterious offspring outcomes later in life are also addressed.
Collapse
Affiliation(s)
- Folami Y. Ideraabdullah
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Department of Nutrition, University of North Carolina School of Medicine, Chapel Hill, NC 27599
- Nutrition Research Institute, University of North Carolina School of Medicine, Chapel Hill, NC 27599
| | - Anthony M. Belenchia
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| | - Cheryl S. Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia 65211
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65211
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO 65211
| | - Seth W. Kullman
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695
| | - Megan Knuth
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Debabrata Mahapatra
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
| | - Michael Bereman
- Toxicology Program, Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695
| | - Edward D. Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710
| | - Catherine A. Peterson
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211
| |
Collapse
|
13
|
Hsieh JH, Ryan K, Sedykh A, Lin JA, Shapiro AJ, Parham F, Behl M. Application of Benchmark Concentration (BMC) Analysis on Zebrafish Data: A New Perspective for Quantifying Toxicity in Alternative Animal Models. Toxicol Sci 2019; 167:92-104. [PMID: 30321397 PMCID: PMC6317423 DOI: 10.1093/toxsci/kfy258] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past decade, the zebrafish is increasingly being used as a model to screen for chemical-mediated toxicities including developmental toxicity (DT) and neurotoxicity (NT). One of the major challenges is lack of harmonization in data analysis approaches, thereby posing difficulty in comparing findings across laboratories. To address this, we sought to establish a unified data analysis strategy for both DT and NT data, by adopting the benchmark concentration (BMC) analysis. There are two critical aspects in the BMC analysis: having a toxicity endpoint amenable for BMC and selecting a proper benchmark response (BMR) for the endpoint. For the former, in addition to the typical endpoints in NT assay (eg, hyper/hypo- response quantified by distance moved), we also used endpoints that assess the differences in movement patterns between chemical-treated embryos and control embryos. For the latter, we standardized the selection of BMR, which is analogous to minimum activity threshold, based on intrinsic response variations in the endpoint. When comparing our BMC results with a traditionally used LOAEL method (lowest-observed-adverse-effect level), we found high active compound concordance (100% for DT vs 74% for NT); generally, the BMC was more sensitive than LOAEL (no. of BMC more sensitive/no. of concordant active compounds, 43/50 for DT vs 16/26 for NT). Using the BMC with standardized toxicity endpoints and an appropriate BMR, we may now have a unified data-analysis approach to comparing results across different zebrafish datasets, for a better understanding of strengths and challenges when using the zebrafish as a screening tool.
Collapse
Affiliation(s)
- Jui-Hua Hsieh
- Kelly Government Solutions, Durham, North Carolina, 27709, USA
| | - Kristen Ryan
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | | | - Ja-An Lin
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27516, USA
| | - Andrew J Shapiro
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - Frederick Parham
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| | - Mamta Behl
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, 27709, USA
| |
Collapse
|
14
|
Cohen Hubal EA, Wetmore BA, Wambaugh JF, El-Masri H, Sobus JR, Bahadori T. Advancing internal exposure and physiologically-based toxicokinetic modeling for 21st-century risk assessments. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:11-20. [PMID: 30116055 PMCID: PMC6760598 DOI: 10.1038/s41370-018-0046-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 03/15/2018] [Accepted: 03/19/2018] [Indexed: 05/22/2023]
Abstract
Scientifically sound, risk-informed evaluation of chemicals is essential to protecting public health. Systematically leveraging information from exposure, toxicology, and epidemiology studies can provide a holistic understanding of how real-world exposure to chemicals may impact the health of populations, including sensitive and vulnerable individuals and life-stages. Increasingly, public health policy makers are employing toxicokinetic (TK) modeling tools to integrate these data streams and predict potential human health impact. Development of a suite of tools for predicting internal exposure, including physiologically-based toxicokinetic (PBTK) models, is being driven by needs to address large numbers of data-poor chemicals efficiently, translate bioactivity, and mechanistic information from new in vitro test systems, and integrate multiple lines of evidence to enable scientifically sound, risk-informed decisions. New modeling approaches are being designed "fit for purpose" to inform specific decision contexts, with applications ranging from rapid screening of hundreds of chemicals, to improved prediction of risks during sensitive stages of development. New data are being generated experimentally and computationally to support these models. Progress to meet the demand for internal exposure and PBTK modeling tools will require transparent publication of models and data to build credibility in results, as well as opportunities to partner with decision makers to evaluate and build confidence in use of these for improved decisions that promote safe use of chemicals.
Collapse
Affiliation(s)
| | - Barbara A Wetmore
- National Exposure Research Laboratory (NERL), US EPA, Washington, USA
| | - John F Wambaugh
- National Center for Computational Toxicology (NCCT), US EPA, Washington, USA
| | - Hisham El-Masri
- National Health and Environmental Effects Laboratory (NHEERL), US EPA, Washington, USA
| | - Jon R Sobus
- National Exposure Research Laboratory (NERL), US EPA, Washington, USA
| | - Tina Bahadori
- National Center for Environmental Assessment (NCEA), US EPA, Washington, USA
| |
Collapse
|
15
|
Hamm JT, Ceger P, Allen D, Stout M, Maull EA, Baker G, Zmarowski A, Padilla S, Perkins E, Planchart A, Stedman D, Tal T, Tanguay RL, Volz DC, Wilbanks MS, Walker NJ. Characterizing sources of variability in zebrafish embryo screening protocols. ALTEX 2018; 36:103-120. [PMID: 30415271 PMCID: PMC10424490 DOI: 10.14573/altex.1804162] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/30/2018] [Indexed: 11/23/2022]
Abstract
There is a need for fast, efficient, and cost-effective hazard identification and characterization of chemical hazards. This need is generating increased interest in the use of zebrafish embryos as both a screening tool and an alternative to mammalian test methods. A Collaborative Workshop on Aquatic Models and 21st Century Toxicology identified the lack of appropriate and consistent testing protocols as a challenge to the broader application of the zebrafish embryo model. The National Toxicology Program established the Systematic Evaluation of the Application of Zebrafish in Toxicology (SEAZIT) initiative to address the lack of consistent testing guidelines and identify sources of variability for zebrafish-based assays. This report summarizes initial SEAZIT information-gathering efforts. Investigators in academic, government, and industry laboratories that routinely use zebrafish embryos for chemical toxicity testing were asked about their husbandry practices and standard protocols. Information was collected about protocol components including zebrafish strains, feed, system water, disease surveillance, embryo exposure conditions, and endpoints. Literature was reviewed to assess issues raised by the investigators. Interviews revealed substantial variability across design parameters, data collected, and analysis procedures. The presence of the chorion and renewal of exposure media (static versus static-renewal) were identified as design parameters that could potentially influence study outcomes and should be investigated further with studies to determine chemical uptake from treatment solution into embryos. The information gathered in this effort provides a basis for future SEAZIT activities to promote more consistent practices among researchers using zebrafish embryos for toxicity evaluation.
Collapse
Affiliation(s)
- Jon T Hamm
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - Patricia Ceger
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - David Allen
- Integrated Laboratory Systems, Research Triangle Park, NC, USA
| | - Matt Stout
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Elizabeth A Maull
- National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Greg Baker
- Battelle, Life Sciences Research, Columbus, OH, USA
| | | | - Stephanie Padilla
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Edward Perkins
- United States Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Antonio Planchart
- Department of Biological Sciences and Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | | | - Tamara Tal
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Robert L Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR, USA
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, CA, USA
| | - Mitch S Wilbanks
- United States Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Nigel J Walker
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| |
Collapse
|
16
|
Green AJ, Hoyo C, Mattingly CJ, Luo Y, Tzeng JY, Murphy SK, Buchwalter DB, Planchart A. Cadmium exposure increases the risk of juvenile obesity: a human and zebrafish comparative study. Int J Obes (Lond) 2018; 42:1285-1295. [PMID: 29511319 PMCID: PMC6054604 DOI: 10.1038/s41366-018-0036-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/13/2017] [Accepted: 12/27/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Human obesity is a complex metabolic disorder disproportionately affecting people of lower socioeconomic strata, and ethnic minorities, especially African Americans and Hispanics. Although genetic predisposition and a positive energy balance are implicated in obesity, these factors alone do not account for the excess prevalence of obesity in lower socioeconomic populations. Therefore, environmental factors, including exposure to pesticides, heavy metals, and other contaminants, are agents widely suspected to have obesogenic activity, and they also are spatially correlated with lower socioeconomic status. Our study investigates the causal relationship between exposure to the heavy metal, cadmium (Cd), and obesity in a cohort of children and in a zebrafish model of adipogenesis. DESIGN An extensive collection of first trimester maternal blood samples obtained as part of the Newborn Epigenetics Study (NEST) was analyzed for the presence of Cd, and these results were cross analyzed with the weight-gain trajectory of the children through age 5 years. Next, the role of Cd as a potential obesogen was analyzed in an in vivo zebrafish model. RESULTS Our analysis indicates that the presence of Cd in maternal blood during pregnancy is associated with increased risk of juvenile obesity in the offspring, independent of other variables, including lead (Pb) and smoking status. Our results are recapitulated in a zebrafish model, in which exposure to Cd at levels approximating those observed in the NEST study is associated with increased adiposity. CONCLUSION Our findings identify Cd as a potential human obesogen. Moreover, these observations are recapitulated in a zebrafish model, suggesting that the underlying mechanisms may be evolutionarily conserved, and that zebrafish may be a valuable model for uncovering pathways leading to Cd-mediated obesity in human populations.
Collapse
Affiliation(s)
- Adrian J Green
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Yiwen Luo
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jung-Ying Tzeng
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Division of Gynecological Oncology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - David B Buchwalter
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA
| | - Antonio Planchart
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
17
|
Weatherly LM, Nelson AJ, Shim J, Riitano AM, Gerson ED, Hart AJ, de Juan-Sanz J, Ryan TA, Sher R, Hess ST, Gosse JA. Antimicrobial agent triclosan disrupts mitochondrial structure, revealed by super-resolution microscopy, and inhibits mast cell signaling via calcium modulation. Toxicol Appl Pharmacol 2018; 349:39-54. [PMID: 29630968 DOI: 10.1016/j.taap.2018.04.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 04/04/2018] [Indexed: 01/15/2023]
Abstract
The antimicrobial agent triclosan (TCS) is used in products such as toothpaste and surgical soaps and is readily absorbed into oral mucosa and human skin. These and many other tissues contain mast cells, which are involved in numerous physiologies and diseases. Mast cells release chemical mediators through a process termed degranulation, which is inhibited by TCS. Investigation into the underlying mechanisms led to the finding that TCS is a mitochondrial uncoupler at non-cytotoxic, low-micromolar doses in several cell types and live zebrafish. Our aim was to determine the mechanisms underlying TCS disruption of mitochondrial function and of mast cell signaling. We combined super-resolution (fluorescence photoactivation localization) microscopy and multiple fluorescence-based assays to detail triclosan's effects in living mast cells, fibroblasts, and primary human keratinocytes. TCS disrupts mitochondrial nanostructure, causing mitochondria to undergo fission and to form a toroidal, "donut" shape. TCS increases reactive oxygen species production, decreases mitochondrial membrane potential, and disrupts ER and mitochondrial Ca2+ levels, processes that cause mitochondrial fission. TCS is 60 × more potent than the banned uncoupler 2,4-dinitrophenol. TCS inhibits mast cell degranulation by decreasing mitochondrial membrane potential, disrupting microtubule polymerization, and inhibiting mitochondrial translocation, which reduces Ca2+ influx into the cell. Our findings provide mechanisms for both triclosan's inhibition of mast cell signaling and its universal disruption of mitochondria. These mechanisms provide partial explanations for triclosan's adverse effects on human reproduction, immunology, and development. This study is the first to utilize super-resolution microscopy in the field of toxicology.
Collapse
Affiliation(s)
- Lisa M Weatherly
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Andrew J Nelson
- Department of Physics and Astronomy, University of Maine, Orono, ME, USA
| | - Juyoung Shim
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Abigail M Riitano
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Erik D Gerson
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | - Andrew J Hart
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA
| | | | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, USA
| | - Roger Sher
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, USA
| | - Samuel T Hess
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Physics and Astronomy, University of Maine, Orono, ME, USA.
| | - Julie A Gosse
- Graduate School of Biomedical Science and Engineering, University of Maine, Orono, ME, USA; Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME, USA.
| |
Collapse
|
18
|
Ardeshir RA, Zolgharnein H, Movahedinia A, Salamat N, Zabihi E. CYP1A gene expression as a basic factor for fipronil toxicity in Caspian kutum fish. Toxicol Rep 2017; 5:113-124. [PMID: 29854583 PMCID: PMC5978015 DOI: 10.1016/j.toxrep.2017.12.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/02/2017] [Accepted: 12/13/2017] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to assess the effects of fipronil insecticide on the Caspian kutum fish at different levels of biological organizations and to find possible relationship between these biomarkers. Different doses of fipronil (65, 130 and 200 mg/kg) were intraperitoneally administered to the fish for 2 weeks. After 7 and 14 days of exposure, alterations in organ-somatic index, tissue and DNA structure, oxidative stress and CYP1A gene expression in gill, liver, brain and kidney were studied. Determination of these parameters in the liver showed that the degree of tissue change (DTC), comet tail, superoxide dismutase (SOD) and relative CYP1A mRNA expression increased mostly in a time dependent manner whereas in the kidney increased mostly in a dose dependent manner. These parameters in the gill increased more in time and dose dependent manner. Apart from the changes in CYP1A expression and oxidative stress, no alterations was observed in the brain. Multiple regression analysis showed that the CYP1A had the most correlation with the organ-somatic index (R2 = 0.76) and comet tail (R2 = 0.89) in the liver, and with DTC (R2 = 0.93) and oxidative stress (R2 = 0.87) in the kidney. Generally, this study showed that CYP1A gene expression can be considered as one basic factor for fipronil toxicity in this fish. However, other possible factors also should be considered for future research.
Collapse
Affiliation(s)
- Rashid Alijani Ardeshir
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Hossein Zolgharnein
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Abdolali Movahedinia
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran.,Department of Marine Biology, Faculty of Marine Sciences, University of Mazandaran, Babolsar, Iran
| | - Negin Salamat
- Department of Marine Biology, Faculty of Marine Sciences, Khorramshahr University of Marine Science and Technology, P.O. Box 669, Khorramshahr, Iran
| | - Ebrahim Zabihi
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
19
|
Weiss-Errico MJ, Berry JP, O'Shea KE. β-Cyclodextrin Attenuates Perfluorooctanoic Acid Toxicity in the Zebrafish Embryo Model. TOXICS 2017; 5:toxics5040031. [PMID: 29113040 PMCID: PMC5750559 DOI: 10.3390/toxics5040031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/31/2017] [Accepted: 11/01/2017] [Indexed: 01/14/2023]
Abstract
Perfluorooctanoic acid (PFOA) has been linked to negative health outcomes including cancer, thyroid disease, infertility, and developmental delays. β-Cyclodextrin (β-CD), a cyclic sugar, has been previously shown to form strong host–guest complexes with PFOA, and is proposed as a means of environmental remediation with respect to this widespread contaminant. In the present study, β-CD was directly examined with regards to possible attenuation of the toxicity of PFOA specifically employing the zebrafish (Danio rerio) embryo model. Zebrafish embryos were exposed to various concentrations of PFOA without β-CD, and with equimolar (1:1) and excess (2:1) molar ratios of β-CD to PFOA, and assessed for lethality and developmental toxicity through seven days post-fertilization (dpf). Rapid onset of lethality with limited morphological abnormalities was observed at relatively low concentrations of PFOA (LC50 ≈ 50 ppm), along with effects on morphometric and neurobehavioral parameters in surviving embryos. A highly significant difference (p < 0.0001) was observed between the 2:1 treatment, and both 1:1 and PFOA only treatments, with respect to lethal concentration and apparent neurobehavioral effects, suggesting an effectively reduced toxicity of the fully complexed PFOA. In contrast, however, neither β-CD treatment reduced developmental toxicity with respect to the morphometric endpoint (i.e., interocular distance). Whereas LC50 of PFOA alone did not change over 7 dpf, the 1:1 and 2:1 values decreased slightly over time, suggesting either delayed or alternative toxic effects on later developmental stages at presumptively lowered levels. This study, therefore, indicates β-CD may be an effective agent to reduce toxicity of and mitigate environmental health concerns associated with PFOA, but that further study is required to elucidate the mechanism of complexation as it relates to the attenuation of toxicity.
Collapse
Affiliation(s)
- Mary Jo Weiss-Errico
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA.
| | - John P Berry
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA.
| | - Kevin E O'Shea
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, FL 33199, USA.
| |
Collapse
|
20
|
Chen B, Gao ZQ, Liu Y, Zheng YM, Han Y, Zhang JP, Hu CQ. Embryo and Developmental Toxicity of Cefazolin Sodium Impurities in Zebrafish. Front Pharmacol 2017; 8:403. [PMID: 28694779 PMCID: PMC5483477 DOI: 10.3389/fphar.2017.00403] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 06/07/2017] [Indexed: 11/15/2022] Open
Abstract
Cefazolin sodium is an essential drug that is widely used in clinical therapy for certain infective diseases caused by bacteria. As drug impurities are considered to be one of the most important causes of drug safety issues, we studied embryotoxicity, cardiotoxicity, and neurotoxicity of nine cefazolin sodium impurities in zebrafish embryo and larvae for the objective control of impurity profiling. LC-MS/MS was employed to analyze the compound absorbance in vivo, and the structure-toxicity relationship was approached. Our results suggested that the structure of MMTD (2-mercapto-5-methyl-1, 3, 4-thiadiazole) is the main toxic functional group for embryo deformities; the 7-ACA (7-aminocephalosporanic acid) structure mainly affects motor nerve function; and both the MMTD and 7-ACA structures are responsible for cardiac effects. Impurity G (7-ACA) presented with the strongest toxicity; impurity A was most extensively absorbed to embryo and larvae; and impurity F (MMTD) exhibited the strongest apparent toxic effect; Therefore, impurities F and G should be monitored from the cefazolin sodium preparations.
Collapse
Affiliation(s)
- Bo Chen
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Zhu-Qing Gao
- Division of Antibiotics, National Institutes for Food and Drug Control, Graduate School of Peking Union Medical CollegeBeijing, China
| | - Ying Liu
- Division of Antibiotics, National Institutes for Food and Drug Control, Graduate School of Peking Union Medical CollegeBeijing, China
| | - Yang-Min Zheng
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Ying Han
- Division of Antibiotics, National Institutes for Food and Drug Control, Graduate School of Peking Union Medical CollegeBeijing, China
| | - Jing-Pu Zhang
- Department of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing, China
| | - Chang-Qin Hu
- Division of Antibiotics, National Institutes for Food and Drug Control, Graduate School of Peking Union Medical CollegeBeijing, China
| |
Collapse
|
21
|
Comparison of waterborne and intraperitoneal exposure to fipronil in the Caspian white fish ( Rutilus frisii) on acute toxicity and histopathology. Toxicol Rep 2017; 4:348-357. [PMID: 28959659 PMCID: PMC5615146 DOI: 10.1016/j.toxrep.2017.06.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/22/2017] [Accepted: 06/22/2017] [Indexed: 01/21/2023] Open
Abstract
Determination of median lethal dose of fipronil in fish for the first time. Determination of median lehal concentration of fipronil in the Caspian white fish. Comparison of acute toxicity and histopathological effect of fipronil in the fish exposed via different routes. Waterborne exposure to fipronil has more effect on gill whereas its intraperitoneal exposure has more effect on kidney. Fish exposed to fipronil shows some alterations in brain tissue reported for the first time.
Fipronil is an effective insecticide widely used in agriculture with potential ecotoxicological consequences. The median lethal dose (LD50) and concentration (LC50) of fipronil in 16.3 g Caspian white fish, Rutilus frisii kutum fingerlings were determined. To determine the LD50, a total of 133 fish were assigned to 19 tanks (7 fish/tank) including one control and 6 treatment groups (300, 450, 550, 650, 750, 850 mg/kg). Fish were injected intraperitoneally and monitored at 96 h. The LD50 of fipronil was 632 mg/kg suggesting it was slightly toxic to the Caspian white fish. To determine LC50, 114 fish were assigned to 19 tanks (6 fish/tank) including one control and 6 treatment groups (300, 400, 500, 600, 700, 800 μg/L). The LC50 of fipronil was 572 μg/L, which was highly toxic to the fish. The degree of tissue change (DTC) in vital organs from moribund fish exposed via waterborne exposure showed severe damage (DTC: 71 ± 52 for 700 μg/L) in the gill, including aneurisms, extensive fusion and necrosis. The fish exposed through the intraperitoneal route seemed to have severe lesions (DTC: 66 ± 50 for 750 mg/kg) in the kidney, involving hemorrhage, tubular degeneration and necrosis. The liver had no significant differences in DTC values between the two routes and showed pyknosis and sinusoid dilation. Hematoxylin and eosin staining did not show any histological alterations in the brain but nissl staining showed some alterations in distribution of purkinje cells. Generally, this study showed that the route of exposure to fipronil not only affects its acute toxicity but also determines the main target organs of toxicity and histopathological alterations in Caspian white fish.
Collapse
|
22
|
Mills MG, Gallagher EP. A targeted gene expression platform allows for rapid analysis of chemical-induced antioxidant mRNA expression in zebrafish larvae. PLoS One 2017; 12:e0171025. [PMID: 28212397 PMCID: PMC5315391 DOI: 10.1371/journal.pone.0171025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chemical-induced oxidative stress and the biochemical pathways that protect against oxidative damage are of particular interest in the field of toxicology. To rapidly identify oxidative stress-responsive gene expression changes in zebrafish, we developed a targeted panel of antioxidant genes using the Affymetrix QuantiGene Plex (QGP) platform. The genes contained in our panel include eight putative Nrf2 (Nfe2l2a)-dependent antioxidant genes (hmox1a, gstp1, gclc, nqo1, prdx1, gpx1a, sod1, sod2), a stress response gene (hsp70), an inducible DNA damage repair gene (gadd45bb), and three reference genes (actb1, gapdh, hprt1). We tested this platform on larval zebrafish exposed to tert-butyl hydroperoxide (tBHP) and cadmium (Cd), two model oxidative stressors with different modes of action, and compared our results with those obtained using the more common quantitative PCR (qPCR) method. Both methods showed that exposure to tBHP and Cd induced expression of prdx1, gstp1, and hmox1a (2- to 12-fold increase via QGP), indicative of an activated Nrf2 response in larval zebrafish. Both compounds also elicited a general stress response as reflected by elevation of hsp70 and gadd45bb, with Cd being the more potent inducer. Transient changes were observed in sod2 and gpx1a expression, whereas nqo1, an Nrf2-responsive gene in mammalian cells, was minimally affected by either tBHP or Cd chemical exposures. Developmental expression analysis of the target genes by QGP revealed marked upregulation of sod2 between 0-96hpf, and to a lesser extent, of sod1 and gstp1. Once optimized, QGP analysis of these experiments was accomplished more rapidly, using far less tissue, and at lower total costs than qPCR analysis. In summary, the QGP platform as applied to higher-throughput zebrafish studies provides a reasonable cost-effective alternative to qPCR or more comprehensive transcriptomics approaches to rapidly assess the potential for chemicals to elicit oxidative stress as a mechanism of chemical toxicity.
Collapse
Affiliation(s)
- Margaret G. Mills
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
| | - Evan P. Gallagher
- Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
23
|
Sarmah S, Marrs JA. Zebrafish as a Vertebrate Model System to Evaluate Effects of Environmental Toxicants on Cardiac Development and Function. Int J Mol Sci 2016; 17:ijms17122123. [PMID: 27999267 PMCID: PMC5187923 DOI: 10.3390/ijms17122123] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 12/04/2016] [Accepted: 12/12/2016] [Indexed: 12/16/2022] Open
Abstract
Environmental pollution is a serious problem of the modern world that possesses a major threat to public health. Exposure to environmental pollutants during embryonic development is particularly risky. Although many pollutants have been verified as potential toxicants, there are new chemicals in the environment that need assessment. Heart development is an extremely sensitive process, which can be affected by environmentally toxic molecule exposure during embryonic development. Congenital heart defects are the most common life-threatening global health problems, and the etiology is mostly unknown. The zebrafish has emerged as an invaluable model to examine substance toxicity on vertebrate development, particularly on cardiac development. The zebrafish offers numerous advantages for toxicology research not found in other model systems. Many laboratories have used the zebrafish to study the effects of widespread chemicals in the environment on heart development, including pesticides, nanoparticles, and various organic pollutants. Here, we review the uses of the zebrafish in examining effects of exposure to external molecules during embryonic development in causing cardiac defects, including chemicals ubiquitous in the environment and illicit drugs. Known or potential mechanisms of toxicity and how zebrafish research can be used to provide mechanistic understanding of cardiac defects are discussed.
Collapse
Affiliation(s)
- Swapnalee Sarmah
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| | - James A Marrs
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|