1
|
Donzelli G, Gehring R, Murugadoss S, Roos T, Schaffert A, Linzalone N. A critical review on the toxicological and epidemiological evidence integration for assessing human health risks to environmental chemical exposures. REVIEWS ON ENVIRONMENTAL HEALTH 2024:reveh-2024-0072. [PMID: 39679553 DOI: 10.1515/reveh-2024-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 11/27/2024] [Indexed: 12/17/2024]
Abstract
Toxicology and epidemiology are the two traditional public health scientific disciplines which can contribute to investigate harmful health effects of exposure to toxic substances. Several frameworks for integrating different lines of evidence were proposed since 2011, evolving based of the emergence of new methodologies and approaches. Through the comparison of various theoretical frameworks for evidence integration, we examined similarities, differences, strengths, and weaknesses to provide insights into potential directions for future research. We identified several key challenges of the integration approach to be applied to risk assessment. More specifically, collaboration within a multidisciplinary team of scientists, toxicologists, epidemiologists, and risk assessors, is strongly recommended to be aligned with key regulatory objectives and promote a harmonized approach. Moreover, literature search transparency and systematicity have to be ensured by following validated guidelines, developing parallel protocols for collecting epidemiological and toxicological evidence from various sources, including human, animal, and new approach methodologies (NAMs). Also, the adoption of tailored quality assessment tools is essential to grade the certainty in evidence. Lastly, we recommend the use of the Adverse Outcome Pathway framework to provide a structured understanding of toxicity mechanisms and allow the integration of human, animal, and NAMs data within a single framework.
Collapse
Affiliation(s)
- Gabriele Donzelli
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy
| | - Ronette Gehring
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Sivakumar Murugadoss
- Scientific Direction of Chemical and Physical Health Risks, SCIENSANO, Brussels, Belgium
| | - Tom Roos
- Department of Population Health Sciences, Institute for Risk Assessment Sciences (IRAS), Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Alexandra Schaffert
- Institute of Medical Biochemistry, Medical University Innsbruck, Innsbruck, Austria
| | - Nunzia Linzalone
- Institute of Clinical Physiology of the National Research Council (CNR-IFC), Pisa, Italy
| |
Collapse
|
2
|
Shirke AV, Radke EG, Lin C, Blain R, Vetter N, Lemeris C, Hartman P, Hubbard H, Angrish M, Arzuaga X, Congleton J, Davis A, Dishaw LV, Jones R, Judson R, Kaiser JP, Kraft A, Lizarraga L, Noyes PD, Patlewicz G, Taylor M, Williams AJ, Thayer KA, Carlson LM. Expanded Systematic Evidence Map for Hundreds of Per- and Polyfluoroalkyl Substances (PFAS) and Comprehensive PFAS Human Health Dashboard. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:26001. [PMID: 38319881 PMCID: PMC10846678 DOI: 10.1289/ehp13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/08/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFAS) encompass a class of chemically and structurally diverse compounds that are extensively used in industry and detected in the environment. The US Environmental Protection Agency (US EPA) 2021 PFAS Strategic Roadmap describes national research plans to address the challenge of PFAS. OBJECTIVES Systematic Evidence Map (SEM) methods were used to survey and summarize available epidemiological and mammalian bioassay evidence that could inform human health hazard identification for a set of 345 PFAS that were identified by the US EPA's Center for Computational Toxicology and Exposure (CCTE) for in vitro toxicity and toxicokinetic assay testing and through interagency discussions on PFAS of interest. This work builds from the 2022 evidence map that collated evidence on a separate set of ∼ 150 PFAS. Like our previous work, this SEM does not include PFAS that are the subject of ongoing or completed assessments at the US EPA. METHODS SEM methods were used to search, screen, and inventory mammalian bioassay and epidemiological literature from peer-reviewed and gray literature sources using manual review and machine-learning software. For each included study, study design details and health end points examined were summarized in interactive web-based literature inventories. Some included studies also underwent study evaluation and detailed extraction of health end point data. All underlying data is publicly available online as interactive visuals with downloadable metadata. RESULTS More than 13,000 studies were identified from scientific databases. Screening processes identified 121 mammalian bioassay and 111 epidemiological studies that met screening criteria. Epidemiological evidence (available for 12 PFAS) mostly assessed the reproductive, endocrine, developmental, metabolic, cardiovascular, and immune systems. Mammalian bioassay evidence (available for 30 PFAS) commonly assessed effects in the reproductive, whole-body, nervous, and hepatic systems. Overall, 41 PFAS had evidence across mammalian bioassay and epidemiology data streams (roughly 11% of searched chemicals). DISCUSSION No epidemiological and/or mammalian bioassay evidence were identified for most of the PFAS included in our search. Results from this SEM, our 2022 SEM on ∼ 150 PFAS, and other PFAS assessment products from the US EPA are compiled into a comprehensive PFAS dashboard that provides researchers and regulators an overview of the current PFAS human health landscape including data gaps and can serve as a scoping tool to facilitate prioritization of PFAS-related research and/or risk assessment activities. https://doi.org/10.1289/EHP13423.
Collapse
Affiliation(s)
- Avanti V. Shirke
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division (CPAD), US Environmental Protection Agency (US EPA), Washington, DC, USA
| | - Elizabeth G. Radke
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division (CPAD), US Environmental Protection Agency (US EPA), Washington, DC, USA
| | | | | | | | | | | | | | | | - Xabier Arzuaga
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division (CPAD), US Environmental Protection Agency (US EPA), Washington, DC, USA
| | - Johanna Congleton
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division (CPAD), US Environmental Protection Agency (US EPA), Washington, DC, USA
| | - Allen Davis
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division (CPAD), US Environmental Protection Agency (US EPA), Washington, DC, USA
| | | | - Ryan Jones
- Center for Public Health and Environmental Assessment, Health & Environmental Effects Assessment Division (HEEAD), US EPA, Durham, North Carolina, USA
| | - Richard Judson
- Center for Computational Toxicology and Exposure (CCTE), US EPA, Durham, North Carolina, USA
| | | | - Andrew Kraft
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division (CPAD), US Environmental Protection Agency (US EPA), Washington, DC, USA
| | | | - Pamela D. Noyes
- Center for Public Health and Environmental Assessment, Chemical & Pollutant Assessment Division (CPAD), US Environmental Protection Agency (US EPA), Washington, DC, USA
| | - Grace Patlewicz
- Center for Computational Toxicology and Exposure (CCTE), US EPA, Durham, North Carolina, USA
| | | | - Antony J. Williams
- Center for Computational Toxicology and Exposure (CCTE), US EPA, Durham, North Carolina, USA
| | | | - Laura M. Carlson
- Center for Public Health and Environmental Assessment, Health & Environmental Effects Assessment Division (HEEAD), US EPA, Durham, North Carolina, USA
| |
Collapse
|