1
|
Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers. Cell Death Dis 2017; 8:e2564. [PMID: 28102848 PMCID: PMC5386353 DOI: 10.1038/cddis.2016.418] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/02/2016] [Indexed: 01/06/2023]
Abstract
Cancer patients receiving anthracycline-based chemotherapy are at risk to develop life-threatening chronic cardiotoxicity with the pathophysiological mechanism of action not fully understood. Besides the most common hypothesis that anthracycline-induced congestive heart failure (CHF) is mainly caused by generation of reactive oxygen species, recent data point to a critical role of topoisomerase II beta (TOP2B), which is a primary target of anthracycline poisoning, in the pathophysiology of CHF. As the use of the only clinically approved cardioprotectant dexrazoxane has been limited by the FDA in 2011, there is an urgent need for alternative cardioprotective measures. Statins are anti-inflammatory and anti-oxidative drugs that are clinically well established for the prevention of cardiovascular diseases. They exhibit pleiotropic beneficial properties beyond cholesterol-lowering effects that most likely rest on the indirect inhibition of small Ras homologous (Rho) GTPases. The Rho GTPase Rac1 has been shown to be a major factor in the regulation of the pro-oxidative NADPH oxidase as well as in the regulation of type II topoisomerase. Both are discussed to play an important role in the pathophysiology of anthracycline-induced CHF. Therefore, off-label use of statins or novel Rac1 inhibitors might represent a promising pharmacological approach to gain control over chronic cardiotoxicity by interfering with key mechanisms of anthracycline-induced cardiomyocyte cell death.
Collapse
|
2
|
Wong MC, Kennedy WP, Schwarzbauer JE. Transcriptionally regulated cell adhesion network dictates distal tip cell directionality. Dev Dyn 2014; 243:999-1010. [PMID: 24811939 DOI: 10.1002/dvdy.24146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND The mechanisms that govern directional changes in cell migration are poorly understood. The migratory paths of two distal tip cells (DTC) determine the U-shape of the C. elegans hermaphroditic gonad. The morphogenesis of this organ provides a model system to identify genes necessary for the DTCs to execute two stereotyped turns. RESULTS Using candidate genes for RNAi knockdown in a DTC-specific strain, we identified two transcriptional regulators required for DTC turning: cbp-1, the CBP/p300 transcriptional coactivator homologue, and let-607, a CREBH transcription factor homologue. Further screening of potential target genes uncovered a network of integrin adhesion-related genes that have roles in turning and are dependent on cbp-1 and let-607 for expression. These genes include src-1/Src kinase, tln-1/talin, pat-2/α integrin and nmy-2, a nonmuscle myosin heavy chain. CONCLUSIONS Transcriptional regulation by means of cbp-1 and let-607 is crucial for determining directional changes during DTC migration. These regulators coordinate a gene network that is necessary for integrin-mediated adhesion. Overall, these results suggest that directional changes in cell migration rely on the precise gene regulation of adhesion.
Collapse
Affiliation(s)
- Ming-Ching Wong
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | | | | |
Collapse
|
3
|
Devine DJ, Rostas JW, Metge BJ, Das S, Mulekar MS, Tucker JA, Grizzle WE, Buchsbaum DJ, Shevde LA, Samant RS. Loss of N-Myc interactor promotes epithelial-mesenchymal transition by activation of TGF-β/SMAD signaling. Oncogene 2013; 33:2620-8. [PMID: 23770854 PMCID: PMC4267223 DOI: 10.1038/onc.2013.215] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 04/02/2013] [Accepted: 05/03/2013] [Indexed: 12/14/2022]
Abstract
Epithelial-mesenchymal transition is one of the critical cellular programs that facilitate the progression of breast cancer to an invasive disease. We have observed that the expression of N-myc interactor (NMI) decreases significantly during progression of breast cancer, specifically in invasive and metastatic stages. Recapitulation of this loss in breast cell lines with epithelial morphology (MCF10A (non-tumorigenic) and T47D (tumorigenic)) by silencing NMI expression causes mesenchymal-like morphological changes in 3D growth, accompanied by upregulation of SLUG and ZEB2 and increased invasive properties. Conversely, we found that restoring NMI expression attenuated the mesenchymal attributes of metastatic breast cancer cells, accompanied by distinctly circumscribed 3D growth with basement membrane deposition and decreased invasion. Further investigations into the downstream signaling modulated by NMI revealed that NMI expression negatively regulates SMAD signaling, which is a key regulator of cellular plasticity. We demonstrate that NMI blocks TGF-β/SMAD signaling via upregulation of SMAD7, a negative feedback regulator of the pathway. We also provide evidence that NMI activates STAT signaling, which negatively modulates TGF-β/SMAD signaling. Taken together, our findings suggest that loss of NMI during breast cancer progression could be one of the driving factors that enhance the invasive ability of breast cancer by aberrant activation of TGF-β/SMAD signaling.
Collapse
Affiliation(s)
- D J Devine
- Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA
| | - J W Rostas
- 1] Mitchell Cancer Institute, University of South Alabama, Mobile, AL, USA [2] Department of Surgery, University of South Alabama, Mobile, AL, USA
| | - B J Metge
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - S Das
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - M S Mulekar
- Department of Mathematics and Statistics, University of South Alabama, Mobile, AL, USA
| | - J A Tucker
- Department of Pathology, University of South Alabama, Mobile, AL, USA
| | - W E Grizzle
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - D J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, AL, USA
| | - L A Shevde
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - R S Samant
- Department of Pathology and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|