1
|
Li Q, Wang Y, Zhang G, Su R, Qi W. Biomimetic mineralization based on self-assembling peptides. Chem Soc Rev 2023; 52:1549-1590. [PMID: 36602188 DOI: 10.1039/d2cs00725h] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Biomimetic science has attracted great interest in the fields of chemistry, biology, materials science, and energy. Biomimetic mineralization is the process of synthesizing inorganic minerals under the control of organic molecules or biomolecules under mild conditions. Peptides are the motifs that constitute proteins, and can self-assemble into various hierarchical structures and show a high affinity for inorganic substances. Therefore, peptides can be used as building blocks for the synthesis of functional biomimetic materials. With the participation of peptides, the morphology, size, and composition of mineralized materials can be controlled precisely. Peptides not only provide well-defined templates for the nucleation and growth of inorganic nanomaterials but also have the potential to confer inorganic nanomaterials with high catalytic efficiency, selectivity, and biotherapeutic functions. In this review, we systematically summarize research progress in the formation mechanism, nanostructural manipulation, and applications of peptide-templated mineralized materials. These can further inspire researchers to design structurally complex and functionalized biomimetic materials with great promising applications.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China.
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Gong Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, P. R. China. .,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.,Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
2
|
Ozaki M, Imai T, Tsuruoka T, Sakashita S, Tomizaki KY, Usui K. Elemental composition control of gold-titania nanocomposites by site-specific mineralization using artificial peptides and DNA. Commun Chem 2021; 4:1. [PMID: 36697560 PMCID: PMC9814042 DOI: 10.1038/s42004-020-00440-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/01/2020] [Indexed: 01/28/2023] Open
Abstract
Biomineralization, the precipitation of various inorganic compounds in biological systems, can be regulated in terms of the size, morphology, and crystal structure of these compounds by biomolecules such as proteins and peptides. However, it is difficult to construct complex inorganic nanostructures because they precipitate randomly in solution. Here, we report that the elemental composition of inorganic nanocomposites can be controlled by site-specific mineralization by changing the number of two inorganic-precipitating peptides bound to DNA. With a focus on gold and titania, we constructed a gold-titania photocatalyst that responds to visible light excitation. Both microscale and macroscale observations revealed that the elemental composition of this gold-titania nanocomposite can be controlled in several ten nm by changing the DNA length and the number of peptide binding sites on the DNA. Furthermore, photocatalytic activity and cell death induction effect under visible light (>450 nm) irradiation of the manufactured gold-titania nanocomposite was higher than that of commercial gold-titania and titania. Thus, we have succeeded in forming titania precipitates on a DNA terminus and gold precipitates site-specifically on double-stranded DNA as intended. Such nanometer-scale control of biomineralization represent a powerful and efficient tool for use in nanotechnology, electronics, ecology, medical science, and biotechnology.
Collapse
Affiliation(s)
- Makoto Ozaki
- grid.258669.60000 0000 8565 5938Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Takahito Imai
- grid.440926.d0000 0001 0744 5780Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, 520-2194 Otsu, Japan
| | - Takaaki Tsuruoka
- grid.258669.60000 0000 8565 5938Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Shungo Sakashita
- grid.258669.60000 0000 8565 5938Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| | - Kin-ya Tomizaki
- grid.440926.d0000 0001 0744 5780Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, 520-2194 Otsu, Japan ,grid.440926.d0000 0001 0744 5780Department of Materials Chemistry and Innovative Materials and Processing Research Center, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, 520-2194 Otsu, Japan
| | - Kenji Usui
- grid.258669.60000 0000 8565 5938Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe, 650-0047 Japan
| |
Collapse
|
3
|
Usui K, Ozaki M, Yamada A, Hamada Y, Tsuruoka T, Imai T, Tomizaki KY. Site-specific control of multiple mineralizations using a designed peptide and DNA. NANOSCALE 2016; 8:17081-17084. [PMID: 27550384 DOI: 10.1039/c6nr03468c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We have developed a site-specific method for precipitating multiple inorganic compounds using target DNA and a designed peptide consisting of a peptide nucleic acid (PNA) sequence and an inorganic compound-precipitating sequence. This system for controlled site-specific precipitation represents a powerful tool for use in nanobiotechnology and materials science.
Collapse
Affiliation(s)
- Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | | | | | | | | | | | | |
Collapse
|
4
|
Ozaki M, Nagai K, Nishiyama H, Tsuruoka T, Fujii S, Endoh T, Imai T, Tomizaki KY, Usui K. Site-specific control of silica mineralization on DNA using a designed peptide. Chem Commun (Camb) 2016; 52:4010-3. [PMID: 26690695 DOI: 10.1039/c5cc07870a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We developed a site-specific method for precipitating inorganic compounds using organic compounds, DNA, and designed peptides with peptide nucleic acids (PNAs). Such a system for site-specific precipitation represents a powerful tool for use in nanobiochemistry and materials chemistry.
Collapse
Affiliation(s)
- Makoto Ozaki
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Kazuma Nagai
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Hiroto Nishiyama
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Takaaki Tsuruoka
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Satoshi Fujii
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| | - Tamaki Endoh
- FIBER (Frontier Institute for Biomolecular Engineering Research), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Takahito Imai
- Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan
| | - Kin-Ya Tomizaki
- Department of Materials Chemistry, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan and Innovative Materials and Processing Research Center, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu 520-2194, Japan.
| | - Kenji Usui
- FIRST (Faculty of Frontiers of Innovative Research in Science and Technology), Konan University, 7-1-20 Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan.
| |
Collapse
|
5
|
Tomizaki KY, Wakizaka S, Yamaguchi Y, Kobayashi A, Imai T. Ultrathin gold nanoribbons synthesized within the interior cavity of a self-assembled peptide nanoarchitecture. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:846-856. [PMID: 24432735 DOI: 10.1021/la4044649] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
There is increasing interest in gold nanocrystals due to their unique physical, chemical, and biocompatible properties. In order to develop a template-assisted method for the fabrication of gold nanocrystals, we demonstrate here the de novo design and synthesis of a β-sheet-forming nonapeptide (RU006: Ac-AIAKAXKIA-NH2, X = L-2-naphthylalanine) which undergoes self-assembly to form disk-like nanoarchitectures approximately 100 nm wide and 2.5 nm high. These self-assemblies tend to form a network of higher-order assemblies in ultrapure water. Using RU006 as a template molecule, we fabricated ultrathin gold nanoribbons 50-100 nm wide, 2.5 nm high, and micrometers long without external reductants. Furthermore, in order to determine the mechanism of ultrathin gold nanoribbon formation, we synthesized four different RU006 analogues. On the basis of the results obtained using RU006 and these analogues, we propose the following mechanism for the self-assembly of RU006. First, RU006 forms a network by the cooperative association of disk-like assemblies in the presence of AuCl4(-) ions that are encapsulated and concentrated within the interior cavity of the network architectures. This is followed by electron transfer from the naphthalene rings to Au(III), resulting in slow growth to form ultrathin gold nanoribbons along the template network architectures under ambient conditions. The resulting ribbons retain the dimensions of the cavity of the template architecture. Our approach will allow the construction of diverse template architectural morphologies and will find applications in the construction of a variety of metallic nanoarchitectures.
Collapse
Affiliation(s)
- Kin-ya Tomizaki
- Department of Materials Chemistry and ‡Innovative Materials and Processing Research Center, Ryukoku University , Seta, Otsu, Shiga 520-2194, Japan
| | | | | | | | | |
Collapse
|