1
|
Wang D, Li Y, Liu Y, Cheng S, Liu F, Zuo R, Ding C, Shi S, Liu G. NPM1 promotes cell proliferation by targeting PRDX6 in colorectal cancer. Int J Biochem Cell Biol 2022; 147:106233. [PMID: 35659568 DOI: 10.1016/j.biocel.2022.106233] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022]
Abstract
Colorectal cancer is a malignant tumor that begins in the colorectal mucosal epithelium. NPM1 is a nucleolar phosphoprotein that has been linked to tumor progression in humans. NPM1 is significantly overexpressed in a variety of tumors, including colorectal cancer, but its role and mechanism in colorectal cancer remain unknown. Therefore, the purpose of this study was to discover the role of NPM1 in promoting colorectal cancer proliferation via PRDX6 and its molecular mechanism. NPM1 knockdown or overexpression inhibited or promoted the proliferation and cell cycle progression of HCT-116 and HT-29 colorectal cancer cells, respectively, according to our findings. Furthermore, NPM1 knockdown or overexpression increased or decreased intracellular ROS levels. Animal experiments revealed that NPM1 knockdown or overexpression inhibited or promoted the growth of colorectal cancer cells transplanted subcutaneously. NPM1 knockdown or overexpression reduced or increased PRDX6 expression and related enzyme activities, respectively, according to our findings. NPM1 formed a complex with CBX3 as evidenced by immunoprecipitation, and the double luciferase reporter gene assay confirmed that the CBX3-NPM1 complex promoted PRDX6 transcription. Our data support the role of NPM1 in promoting the proliferation of colorectal cancer, which may be accomplished by CBX3 promoting the expression of the antioxidant protein PRDX6 and thus inhibiting intracellular ROS levels. NPM1 and PRDX6 are potential colorectal cancer therapeutic targets.
Collapse
Affiliation(s)
- Dan Wang
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Yin Li
- Department of Medical Examination, Xiamen International Travel Healthcare Center, Xiamen 361000, Fujian, China
| | - Yanling Liu
- School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, China
| | - Shuyu Cheng
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Fan Liu
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361002, China
| | - Renjie Zuo
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Chenchun Ding
- Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China
| | - Songlin Shi
- Department of Basic Medicine, Medical College of Xiamen University, Xiamen, Fujian 361002, China.
| | - Guoyan Liu
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian 361002, China; Institute of Gastrointestinal Oncology, School of Medicine, Xiamen University, Xiamen, Fujian 361102, China; School of Pharmaceutical Sciences Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
2
|
Khaled SAA, Burthem J, Elnoor EBEA, ElToni LF, Ahmed HM, Ahmed SM. Quantitative Assay of Mutated Nucleophosmin in Acute Myeloid Leukemia. J Hematol 2019; 8:111-120. [PMID: 32300454 PMCID: PMC7153661 DOI: 10.14740/jh390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/09/2019] [Indexed: 11/11/2022] Open
Abstract
Background In our previous work, we provided strong evidence that nucleophosmin (NPM) gene mutation has an important role in leukemogenesis of primary acute myeloid leukemia (AML). Furthermore, we speculated a new targeted therapy in patients with primary AML and bearing mutated NPM (mNPM). Based on these results together with findings of other researchers, it was essential to develop a method for accurate detection of mNPM. Methods Our method based on utilizing the most recent flow cytometeric techniques and instruments in measuring mNPM. Attributed to their availability and technical feasibility, we used human leukemia cell lines to validate our method. Results The main findings were differential expression of wild-type NPM (wtNPM) within the same sample. Furthermore flow cytometry (FCM) was a simple straightforward tool for quantitative assay of mNPM. Conclusions In this work we developed an innovative technique that could enable quantitative assay of mNPM, and ease its use as a biomarker in cytogenetic and molecular prognostication of primary AML. In addition the study suggested that FCM could differentiate mNPM expression within cells of the same patient thus could be used for monitoring of minimal residual disease.
Collapse
Affiliation(s)
- Safaa A A Khaled
- Departement of Internal Medicine, Clinical Hematology Unit, Assiut University Hospital, Assiut, Egypt.,Bone Marrow Transplantation Unit, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - John Burthem
- Center of Hematological Malignancies, Manchester University, Manchester, UK
| | - El-Badry E Abo Elnoor
- Departement of Internal Medicine, Clinical Hematology Unit, Assiut University Hospital, Assiut, Egypt
| | - Lobna F ElToni
- Departement of Internal Medicine, Clinical Hematology Unit, Assiut University Hospital, Assiut, Egypt
| | - Hanan M Ahmed
- Departement of Internal Medicine, Clinical Hematology Unit, Assiut University Hospital, Assiut, Egypt
| | - Sohier M Ahmed
- Department of Clinical Pathology and Laboratory Hematology, Assiut University Hospital, Assiut, Egypt
| |
Collapse
|
3
|
La Manna S, Scognamiglio PL, Roviello V, Borbone F, Florio D, Di Natale C, Bigi A, Cecchi C, Cascella R, Giannini C, Sibillano T, Novellino E, Marasco D. The acute myeloid leukemia-associated Nucleophosmin 1 gene mutations dictate amyloidogenicity of the C-terminal domain. FEBS J 2019; 286:2311-2328. [PMID: 30921500 DOI: 10.1111/febs.14815] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/29/2019] [Accepted: 03/21/2019] [Indexed: 01/04/2023]
Abstract
Nucleophosmin 1 (NPM1) is a nucleus-cytoplasm shuttling protein ubiquitously expressed and highly conserved. It is involved in many cellular processes and its gene is mutated in ~ 50-60% of Acute Myeloid Leukemia (AML) patients. These mutations cause its cytoplasmic mislocation and accumulation (referred to as NPM1c+) and open the door to rational targeted therapy for AML diseases with mutated NPM1. Currently, there is limited knowledge on the mechanism of action of NPM1c+ and on structural determinants of the leukemogenic potential of AML mutations. Numerous previous studies outlined an unexpected amyloid-like aggregation tendency of several regions located in the C-terminal domain that, in wild-type form, fold as a three-helical-bundle. Here, using a combination of different techniques including Thioflavin T fluorescence, congo red absorbance, CD spectroscopy, Scanning Electron Microscopy (SEM) and wide-angle X-ray scattering on a series of peptides bearing mutations, we evidence that the amyloidogenicity of NPM1 mutants is directly linked to AML. Noticeably, AML point mutations strongly affect the amyloid cytotoxic effects in neuroblastoma cells and the morphologies of deriving fibrils. This study paves the way to deepen our understanding of AML-associated NPM1 mutants, and could help to break new ground for the identification of novel drugs targeting NPM1c+ for treatment of AML.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Pasqualina Liana Scognamiglio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Valentina Roviello
- Analytical Chemistry for the Environment and CeSMA (Advanced Metrologic Service Center), University of Naples "Federico II", Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples "Federico II", Italy
| | - Daniele Florio
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Concetta Di Natale
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Alessandra Bigi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Cinzia Giannini
- Institute of Crystallography (IC), National Research Council, Bari, Italy
| | - Teresa Sibillano
- Institute of Crystallography (IC), National Research Council, Bari, Italy
| | - Ettore Novellino
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| | - Daniela Marasco
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Italy
| |
Collapse
|