1
|
Mansouritorghabeh H, Monard A, Heubel‐Moenen F, Leentjens J, Stroobants A, Henskens Y. The Utility of Total Thrombus-Formation Analysis System (T-TAS) in the Thrombosis and Hemostasis Field: A Scoping Review. Int J Lab Hematol 2025; 47:201-211. [PMID: 39659111 PMCID: PMC11885686 DOI: 10.1111/ijlh.14403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/07/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND A wide variety of laboratory hemostasis tests is available, but the majority is plasma-based, static and unable to assess platelet function and fibrin formation simultaneously. The Total Thrombus-Formation Analysis System (T-TAS) is a microchip-based flow chamber system that simulates in vivo conditions for evaluating whole blood thrombogenicity. AIM A comprehensive overview of its applicability in different thrombosis and hemostasis related clinical situations is lacking and therefore this scoping review was performed. MATERIALS & METHODS A literature search was done using the electronic databases PubMed, Scopus and Embase on January 7, 2024. Original studies assessing the usefulness of the T-TAS in thrombosis and hemostasis related clinical situations were eligible for this scoping review. RESULTS A total of 28 studies were included; six studies investigating the role of the T-TAS in congenital bleeding disorders, five studies using the T-TAS to assess 1-year bleeding risk in patients on antiplatelet or anticoagulant medications, four studies investigating the effects of thrombocytopenia and hemodialysis on thrombus formation as measured by the T-TAS, 11 studies testing the applicability of the T-TAS in the monitoring of anticoagulant and antiplatelet therapies and eventually two studies on the ability of the T-TAS to assess the thrombogenicity in different disease entities. DISCUSSION & CONCLUSION The T-TAS method is an interesting technology that mimics the complex biological coagulation process using shear forces, creating a "blood vessel component on a chip". More research is needed, but it could eventually function as a screening test for platelet function and coagulation. Moreover, it could be used to detect the presence of anticoagulant and/or antiplatelet medication.
Collapse
Affiliation(s)
- H. Mansouritorghabeh
- Central Diagnostic Laboratories, Ghaem HospitalMashhad University of Medical SciencesMashhadIran
- Department of Internal Medicine, Division of Thrombosis and HemostasisEinthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical CenterLeidenThe Netherlands
| | - A. Monard
- Department of Internal Medicine – HematologyMaastricht University Medical Centre+MaastrichtThe Netherlands
- CARIM–School for Cardiovascular DiseaseMaastricht UniversityMaastrichtThe Netherlands
| | - F. Heubel‐Moenen
- Department of Internal Medicine – HematologyMaastricht University Medical Centre+MaastrichtThe Netherlands
| | - J. Leentjens
- Department of Internal Medicine–Vascular MedicineRadboud University Medical Center, RadboudUMCNijmegenThe Netherlands
| | - A. Stroobants
- Department of Clinical ChemistryRadboud University Medical Center, RadboudUMC Laboratory for Diagnostics and Laboratory for HematologyNijmegenThe Netherlands
| | - Y. Henskens
- CARIM–School for Cardiovascular DiseaseMaastricht UniversityMaastrichtThe Netherlands
- Central Diagnostic Laboratory, Unit for Hemostasis and TransfusionMaastricht University Medical Centre+MaastrichtThe Netherlands
| |
Collapse
|
2
|
Ogugofor MO, Njoku UO, Njoku OU, Batiha GES. Phytochemical analysis and thrombolytic profiling of Costus afer stem fractions. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-021-00392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The most commonly occurring mechanism driving ischemic heart disease, ischemic stroke, and myocardial infarction is thrombosis. It is normally characterized by platelet activation and aggregation. Thrombolytics have been used in the treatment of several forms of thrombosis, but their adverse effects have limited their usefulness. Thus, there is a need to develop alternatives from medicinal plants known to possess antithrombotic activity such as Costus afer.
Results
The phytochemical evaluations indicated the presence of flavonoids, alkaloids, cardiac glycosides, tannins, terpenoids, and saponins. The antithrombotic profiling showed that streptokinase had the highest percentage clot lysis, followed by ethylacetate fraction of the extract, which was higher than aspirin and other fractions of the extract.
Conclusion
The present findings show that C. afer stem extract and various fractions possess antithrombotic activities. However, further studies are needed to characterize the antithrombotic bioactive compounds present in the different fractions that are responsible for the activities.
Collapse
|
3
|
Thalerová S, Pešková M, Kittová P, Gulati S, Víteček J, Kubala L, Mikulík R. Effect of Apixaban Pretreatment on Alteplase-Induced Thrombolysis: An In Vitro Study. Front Pharmacol 2021; 12:740930. [PMID: 34603054 PMCID: PMC8479181 DOI: 10.3389/fphar.2021.740930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/27/2021] [Indexed: 12/22/2022] Open
Abstract
Benefit of thrombolytic therapy in patients with acute stroke, who are on anticoagulant treatment, is not well addressed. The aim of this study was to investigate whether apixaban can modify the thrombolytic efficacy of alteplase in vitro. Static and flow models and two variants of red blood cell (RBC) dominant clots, with and without apixaban, were used. Clots were prepared from the blood of healthy human donors and subsequently exposed to alteplase treatment. Apixaban and alteplase were used in clinically relevant concentrations. Clot lysis in the static model was determined both by clot weight and spectrophotometric determination of RBC release. Clot lysis in the flow model was determined by measuring recanalization time, clot length and spectrophotometric determination of RBC release. In the static model, clots without apixaban; compared to those with apixaban had alteplase-induced mass loss 54 ± 8% vs. 53 ± 8%, p = 1.00; RBC release 0.14 ± 0.04 vs. 0.12 ± 0.04, p = 0.14, respectively. Very similar results were obtained if plasma was used instead of physiological buffered saline as the incubation medium. In the flow model, clot lysis without apixaban; compared to those with apixaban was as follows: recanalization time 107 ± 46 min vs. 127 ± 31 min, p = 1.00; recanalization frequency 90 ± 22% vs. 90 ± 22%, p = 1.00; clot volume reduction 32 ± 15% vs. 34 ± 10%, p = 1.00; RBC release 0.029 ± 0.007 vs. 0.022 ± 0.007, p = 0.16, respectively. Apixaban had no positive effect on alteplase-induced thrombolysis in both the in vitro static and flow models. Our data support current clinical practice, such that thrombolysis is contraindicated in stroke treatment for patients who have been treated with anticoagulants.
Collapse
Affiliation(s)
- Sandra Thalerová
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czechia
| | - Michaela Pešková
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Patrícia Kittová
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Sumeet Gulati
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia.,Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia
| | - Jan Víteček
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Center of Biomolecular and Cell Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Lukáš Kubala
- Institute of Biophysics of the Czech Academy of Sciences, Brno, Czechia.,Center of Biomolecular and Cell Engineering, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| | - Robert Mikulík
- Neurology Department, International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czechia
| |
Collapse
|
4
|
Sikora J, Karczmarska-Wódzka A, Bugieda J, Sobczak P. The Use of Total Thrombus Formation Analysis System as a Tool to Assess Platelet Function in Bleeding and Thrombosis Risk-A Systematic Review. Int J Mol Sci 2021; 22:8605. [PMID: 34445311 PMCID: PMC8395324 DOI: 10.3390/ijms22168605] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Today there are many devices that can be used to study blood clotting disorders by identifying abnormalities in blood platelets. The Total Thrombus Formation Analysis System is an automated microchip flow chamber system that is used for the quantitative analysis of clot formation under blood flow conditions. For several years, researchers have been using a tool to analyse various clinical situations of patients to identify the properties and biochemical processes occurring within platelets and their microenvironment. METHODS An investigation of recent published literature was conducted based on PRISMA. This review includes 52 science papers directly related to the use of the Total Clot Formation Analysis System in relation to bleeding, surgery, platelet function assessment, anticoagulation monitoring, von Willebrand factor and others. CONCLUSION Most available studies indicate that The Total Thrombus Formation Analysis System may be useful in diagnostic issues, with devices used to monitor therapy or as a significant tool for predicting bleeding events. However, T-TAS not that has the potential for diagnostic indications, but allows the direct observation of the flow and the interactions between blood cells, including the intensity and dynamics of clot formation. The device is expected to be of significant value for basic research to observe the interactions and changes within platelets and their microenvironment.
Collapse
Affiliation(s)
- Joanna Sikora
- Research and Education Unit for Experimental Biotechnology, Department of Transplantology and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (A.K.-W.); (J.B.)
| | - Aleksandra Karczmarska-Wódzka
- Research and Education Unit for Experimental Biotechnology, Department of Transplantology and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (A.K.-W.); (J.B.)
| | - Joanna Bugieda
- Research and Education Unit for Experimental Biotechnology, Department of Transplantology and General Surgery, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland; (A.K.-W.); (J.B.)
| | - Przemysław Sobczak
- Department of Hematology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland;
| |
Collapse
|
5
|
Iwanaga T, Fukushima R, Nagasato T, Maruyama I, Miura N. Analysis of blood clotting with the total thrombus analysis system in healthy dogs. J Vet Diagn Invest 2021; 33:357-361. [PMID: 33559534 DOI: 10.1177/1040638721991862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date, coagulation tests are unable to reflect in vivo coagulation status in the same system, including platelet function, fibrin clot formation, and whole blood flow. The Total Thrombus Analysis System (T-TAS), which is a microfluidic assay that simulates conditions in vivo, measures whole blood flow at defined shear rates under conditions designed to assess platelet function (PL-chip) or coagulation and fibrin clot formation (AR-chip). The T-TAS records occlusion start time, occlusion time, and area under the curve. We evaluated this test in healthy control dogs. We also investigated the effect in vivo of acetylsalicylic acid (ASA), and the effect in vitro of an anticoagulation drug (dalteparin; low-molecular-weight heparin; LMWH). The CV of the AUC of both chips was good (CVs of 6.45% [PL] and 1.57% [AR]). The inhibition of platelet function by ASA was evident in the right-shift in the PL test pressure curve. The right-shift in the AR test pressure curves showed that the administration of LMWH inhibited both platelets and the coagulation cascade. The T-TAS may be useful in the evaluation of canine blood coagulation.
Collapse
Affiliation(s)
- Tomoko Iwanaga
- Departments of Joint Faculty of Veterinary Medicine, Kagoshima University Veterinary Teaching Hospital, Kagoshima University, Kagoshima, Japan
| | - Ryuji Fukushima
- Cooperative Department of Veterinary Medicine, Animal Medical Center, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tomoka Nagasato
- Graduate School of Medical and Dental Science, System Biology in Thromboregulation, Kagoshima University, Kagoshima, Japan
| | - Ikuro Maruyama
- Graduate School of Medical and Dental Science, System Biology in Thromboregulation, Kagoshima University, Kagoshima, Japan
| | - Naoki Miura
- Departments of Joint Faculty of Veterinary Medicine, Kagoshima University Veterinary Teaching Hospital, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
6
|
Mastenbroek TG, Karel MFA, Nagy M, Chayoua W, Korsten EIJ, Coenen DM, Debets J, Konings J, Brouns AE, Leenders PJA, van Essen H, van Oerle R, Heitmeier S, Spronk HM, Kuijpers MJE, Cosemans JMEM. Vascular protective effect of aspirin and rivaroxaban upon endothelial denudation of the mouse carotid artery. Sci Rep 2020; 10:19360. [PMID: 33168914 PMCID: PMC7653917 DOI: 10.1038/s41598-020-76377-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 10/27/2020] [Indexed: 11/08/2022] Open
Abstract
While in recent trials the dual pathway inhibition with aspirin plus rivaroxaban has shown to be efficacious in patients with atherosclerotic cardiovascular disease, little is known about the effects of this combination treatment on thrombus formation and vascular remodelling upon vascular damage. The aim of this study was to examine the effects of aspirin and/or rivaroxaban on injury-induced murine arterial thrombus formation in vivo and in vitro, vessel-wall remodelling, and platelet-leukocyte aggregates. Temporary ligation of the carotid artery of C57BL/6 mice, fed a western type diet, led to endothelial denudation and sub-occlusive thrombus formation. At the site of ligation, the vessel wall stiffened and the intima-media thickened. Aspirin treatment antagonized vascular stiffening and rivaroxaban treatment led to a positive trend towards reduced stiffening. Local intima-media thickening was antagonized by both aspirin or rivaroxaban treatment. Platelet-leukocyte aggregates and the number of platelets per leukocyte were reduced in aspirin and/or rivaroxaban treatment groups. Furthermore, rivaroxaban restricted thrombus growth and height in vitro. In sum, this study shows vascular protective effects of aspirin and rivaroxaban, upon vascular injury of the mouse artery.
Collapse
Affiliation(s)
- T G Mastenbroek
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht, The Netherlands
| | - M F A Karel
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M Nagy
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - W Chayoua
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - E I J Korsten
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - D M Coenen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Debets
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J Konings
- Synapse Research Institute, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - A E Brouns
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - P J A Leenders
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - H van Essen
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - R van Oerle
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - S Heitmeier
- Cardiovascular Research Institute, Bayer AG, Wuppertal, Germany
| | - H M Spronk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - M J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - J M E M Cosemans
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
7
|
Iwanaga T, Miura N, Brainard BM, Brooks MB, Goggs R. A Novel Microchip Flow Chamber (Total Thrombus Analysis System) to Assess Canine Hemostasis. Front Vet Sci 2020; 7:307. [PMID: 32582782 PMCID: PMC7282356 DOI: 10.3389/fvets.2020.00307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/05/2020] [Indexed: 01/27/2023] Open
Abstract
Hemorrhagic diseases are common in dogs. Current coagulation assays do not model all aspects of in vivo hemostasis and may not predict bleeding risk. The Total-Thrombus Analysis System (T-TAS) is a novel hemostasis assay system in which whole blood flows through microfluidic channels at defined shear rates to provide qualitative and quantitative evaluation of platelet function (PL-chip) and coagulation function (AR-chip). The present study evaluated the T-TAS in dogs with hereditary bleeding disorders and with acquired hemorrhagic syndromes (Group 1), and healthy controls (Group 2). Hereditary defects included von Willebrand's disease (VWD; n = 4), hemophilia A (n = 2), and canine Scott syndrome (n = 2). Acquired hemorrhagic disorders included neoplastic hemoperitoneum (n = 2) and acute hemorrhagic diarrhea syndrome (n = 1). Citrate anticoagulated samples were collected from diseased dogs (Group 1, n = 11) and controls (Group 2, n = 11) for coagulation screening tests, fibrinogen analyses, D-dimer concentration, antithrombin activity, von Willebrand Factor antigen, PFA-100 closure time (PFA-CT), and thromboelastography (TEG). Citrate and hirudin anticoagulated samples were used for T-TAS analyses at two shear rates. Qualitative thrombus formation in each chip was recorded using the T-TAS video camera. Numeric parameters, derived from the instrument software, included occlusion start time (OST; time to 10 kPa), occlusion time (OT; time to 60 kPa (PL-chip) or 80 kPa (AR-chip)), and area under the pressure curve (AUC). Correlations between continuous variables were evaluated by Spearman's rank. Continuous variables were compared between groups by Student's t-test or the Mann-Whitney U-test. Alpha was set at 0.05. In combined analyses of all dogs, significant correlations were identified between T-TAS variables, between the PFA-CT and PL-chip parameters and between TEG variables and AR-chip parameters. The prothrombin time correlated with the AR-chip AUC at both shear rates. In Group 1 dogs, the AR-chip AUC at low shear was significantly reduced compared with Group 2 dogs. Aberrant thrombus formation was seen in video images recorded from dogs with VWD and hemophilia A. The T-TAS AR-chip analysis distinguished dogs with bleeding risk compared to healthy controls. Initial evaluations of the T-TAS suggest it may aid characterization of hemostasis in patients at-risk of bleeding and assist with delineating bleeding phenotypes.
Collapse
Affiliation(s)
- Tomoko Iwanaga
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Naoki Miura
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Benjamin M Brainard
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Marjory B Brooks
- Department of Population Medicine and Diagnostic Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| | - Robert Goggs
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, United States
| |
Collapse
|
8
|
Inhibitory mechanisms of very low-dose rivaroxaban in non-ST-elevation myocardial infarction. Blood Adv 2019; 2:715-730. [PMID: 29588304 DOI: 10.1182/bloodadvances.2017013573] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/13/2018] [Indexed: 11/20/2022] Open
Abstract
Very low-dose (VLD) factor Xa (FXa) inhibition, in combination with acetylsalicylic acid (ASA) and clopidogrel, is associated with improved outcomes in patients with acute coronary syndrome (ACS) with a tolerable bleeding risk profile. To date, there are no data documenting platelet inhibition and the anticoagulatory effects of VLD FXa inhibition on top of guideline-adherent dual-antiplatelet therapy (DAPT) in patients with ACS. Patients with non-ST-elevation myocardial infarction (NSTEMI) receiving oral DAPT (ASA + clopidogrel, n = 20; or ASA + ticagrelor, n = 20) were prospectively enrolled in a nonrandomized study. Coagulation- and platelet-dependent thrombin generation (TG), measured by means of the calibrated automated thrombogram, were significantly decreased after in vitro and in vivo addition of rivaroxaban. As shown by a total thrombus-formation analysis approach, rivaroxaban treatment led to a significantly decreased coagulation-dependent (AR-chip) thrombus formation in patients treated with ASA plus P2Y12 inhibitor (clopidogrel/ticagrelor), whereas the pure platelet-dependent (PL-chip) thrombus formation was not affected at all. Adjunctive rivaroxaban therapy was not associated with significant differences in platelet aggregation assessed by light-transmission aggregometry (LTA). Nevertheless, according to fluorescence-activated cell sorter analysis, VLD rivaroxaban treatment resulted in a significantly reduced expression of platelet HMGB-1, whereas P-selectin exposure was not affected. Furthermore, an enhanced effect of rivaroxaban on total thrombus formation and TG was observed in particular in clopidogrel nonresponder patients defined as adenosine 5'-diphosphate-induced LTA ≥40%. VLD rivaroxaban reduces thrombus formation and platelet-dependent TG in patients with ACS receiving DAPT, which can be of potential ischemic benefit. This trial was registered at www.clinicaltrials.gov as #NCT01417884.
Collapse
|
9
|
Al Ghaithi R, Mori J, Nagy Z, Maclachlan A, Hardy L, Philippou H, Hethershaw E, Morgan NV, Senis YA, Harrison P. Evaluation of the Total Thrombus-Formation System (T-TAS): application to human and mouse blood analysis. Platelets 2018; 30:893-900. [PMID: 30365350 DOI: 10.1080/09537104.2018.1535704] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 12/26/2022]
Abstract
The Total Thrombus-formation Analyser System (T-TAS) is a whole blood flow chamber system for the measurement of in vitro thrombus formation under variable shear stress conditions. Our current study sought to evaluate the potential utility of the T-TAS for the measurement of thrombus formation within human and mouse whole blood. T-TAS microchips (collagen, PL chip; collagen/tissue thromboplastin, AR chip) were used to analyze platelet (PL) or fibrin-rich thrombus formation, respectively. Blood samples from humans (healthy and patients with mild bleeding disorders) and wild-type (WT), mice were tested. Light transmission lumi-aggregometer (lumi-LTA) was performed in PRP using several concentrations of ADP, adrenaline, arachidonic acid, collagen, PAR-1 peptide and ristocetin. Thrombus growth (N = 22) increased with shear within PL (4:40 ± 1.11, 3:25 ± 0.43 and 3:12 ± 0.48 mins [1000, 1500 and 2000s-1]) and AR chips (3:55 ± 0.42 and 1:49 ± 0.19 [240s-1 and 600s-1]). The area under the curve (AUC) on the PL chip was also reduced at 1000s-1 compared to 1500/2000s-1 (260 ± 51.7, 317 ± 55.4 and 301 ± 66.2, respectively). In contrast, no differences in the AUC between 240s-1 and 600s-1 were observed in the AR chip (1593 ± 122 and 1591 ± 158). The intra-assay coefficient of variation (CV) (n = 10) in the PL chip (1000s-1) and AR chip (240s-1) were T1014.1%, T6016.7%, T10-6022.8% and AUC1024.4% or T10 9.03%, T808.64%, T10-8023.8% and AUC305.1%. AR chip thrombus formation was inhibited by rivaroxaban (1 µM), but not with ticagrelor (10 µM). In contrast, PL chip thrombus formation was totally inhibited by ticagrelor. T-TAS shows an overall agreement with lumi-LTA in 87% of patients (n = 30) with normal PL counts recruited into the genotyping and phenotyping of platelet (GAPP) study and suspected to have a PL function defect. The onset (T10) of thrombus formation in WT mice (N = 4) was shorter when compared to humans e.g. PL chip (1000s-1) T10 were 02:02 ± 00:23 and 03:30 ± 0:45, respectively). T-TAS measures in vitro thrombus formation and can be used for monitoring antithrombotic therapy, investigating patients with suspected PL function defects and monitoring PL function within mice.
Collapse
Affiliation(s)
- Rashid Al Ghaithi
- Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham , Birmingham , UK
- Haematology and Blood Transfusion Department, The Royal Hospital, Ministry of Health , Muscat , Sultanate of Oman
| | - Jun Mori
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham , Birmingham , UK
| | - Zoltan Nagy
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham , Birmingham , UK
| | - Annabel Maclachlan
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham , Birmingham , UK
| | - Lewis Hardy
- Leeds Institute of Cardiovascular and Metabolic Medicine LIGHT Laboratories, University of Leeds , Leeds , West Yorkshire , UK
| | - Helen Philippou
- Leeds Institute of Cardiovascular and Metabolic Medicine LIGHT Laboratories, University of Leeds , Leeds , West Yorkshire , UK
| | - Emma Hethershaw
- Leeds Institute of Cardiovascular and Metabolic Medicine LIGHT Laboratories, University of Leeds , Leeds , West Yorkshire , UK
| | - Neil V Morgan
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham , Birmingham , UK
| | - Yotis A Senis
- Institute of Cardiovascular Sciences, Institute for Biomedical Research, University of Birmingham , Birmingham , UK
| | - Paul Harrison
- Institute of Inflammation and Ageing, University of Birmingham , Birmingham , UK
| |
Collapse
|
10
|
Przygodzki T, Wolska N, Talar M, Polak D, Gapinska M, Watala C. Comparison of different microscopy approaches to quantification of inhibitory effect on thrombus formation under flow conditions by the example of adenosine receptor agonist HE-NECA. J Pharmacol Toxicol Methods 2018; 94:94-104. [PMID: 30031827 DOI: 10.1016/j.vascn.2018.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 06/18/2018] [Accepted: 07/17/2018] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Thrombus formation in vitro in flow conditions and its visualization and quantification with the use of microscopy are widely utilized to evaluate activity of compounds with a potential antithrombotic activity. Visualization and quantification of thrombi can be performed with the use of wide-field or confocal microscopy. Acquiring reliable numerical data from wide-field microscopy images of objects which have a complex three-dimensional structure is strongly influenced by the methods used for image analysis. This can be a possible source of inaccuracy in assessment of antithrombotic activity of a tested substance. We aimed to verify how different approaches to the quantification of wide-field images can affect the evaluation of an antiplatelet effect of a tested substance. METHODS We compared three algorithms of image analysis to evaluate an effect of 2-hexynyl-5'-ethylcarboxamidoadenosine (HE-NECA), a compound of a moderate antiplatelet activity on thrombus formation, and of abciximab - a potent antiplatelet compound. Also, we studied how the results obtained in a wide-field imaging correspond to those obtained by means of confocal imaging. RESULTS Three algorithms for analysis of wide-field images showed antiplatelet effect of HE-NECA or abciximab. Absolute values of thrombus area and outcomes of the evaluation of inhibition efficacy of HE-NECA were significantly different between the algorithms. Analysis of volumes and heights of thrombi obtained by confocal imaging confirmed inhibitory effect of HE-NECA, but the evaluated levels of inhibition were significantly different from that obtained by wide-field imaging. DISCUSSION We conclude that wide-field imaging provides reliable qualitative data on an inhibitory effect on thrombus formation, despite differences which can emerge from various approaches to image analysis. However, quantitative evaluation and comparison of the efficacy of inhibitors on the basis of total area occupied by thrombi obtained by wide-field microscopy should be made with caution. To obtain a reliable quantitative assessment of the effect of a tested compound on thrombus structure the use of confocal microscopy is inevitable.
Collapse
Affiliation(s)
- Tomasz Przygodzki
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland.
| | - Nina Wolska
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland
| | - Marcin Talar
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland
| | - Dawid Polak
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland
| | - Magdalena Gapinska
- Laboratory of Microscopic Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha Street, 90-237 Lodz, Poland
| | - Cezary Watala
- Department of Haemostatic Disorders, Chair of Biomedical Sciences, Faculty of Health Sciences, Medical University of Lodz, 6/8 Mazowiecka Street, 92-235 Lodz, Poland
| |
Collapse
|
11
|
Hartmann R, Feenstra T, Valentino L, Dockal M, Scheiflinger F. In vitro studies show synergistic effects of a procoagulant bispecific antibody and bypassing agents. J Thromb Haemost 2018; 16:S1538-7836(22)02222-X. [PMID: 29888855 DOI: 10.1111/jth.14203] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 12/15/2022]
Abstract
Essentials Patients with hemophilia A and inhibitors receiving emicizumab experience breakthrough bleeding. Safety concerns may exist when combining emicizumab with bypassing agents. Combined bypassing agent and bispecific antibody increased thrombin generation up to 17-fold. Thrombotic effects should be considered when combining emicizumab with plasma bypassing agent. SUMMARY Background Investigational non-factor products such as emicizumab offer a treatment option for patients with hemophilia and inhibitors. However, their mechanism of action raises questions regarding safety when they are combined with treatments for breakthrough bleeding. Objectives To evaluate in vitro thrombin generation (TG) and clot formation for combinations of activated prothrombin complex concentrate (aPCC), recombinant activated factor VII (rFVIIa), and a sequence-identical analog of emicizumab (SIA). Methods Therapeutic concentrations of SIA (20-600 nm) alone or with aPCC (0.05-1 U mL-1 ), isolated aPCC components or rFVIIa (0.88-5.25 μg mL-1 ) were tested for TG and compared with reference ranges for healthy donor plasma. Coagulation of FVIII-inhibited blood was determined with a widely established method, i.e. rotational thromboelastometry (ROTEM), and confirmed with the Total Thrombus-formation Analysis System. Results and conclusions SIA (600 nm) or aPCC (0.5 U mL-1 ) alone resulted in peak thrombin levels of 21.4 nm and 38.6 nm, respectively, both of which are lower than normal (83.7 ± 29.8 nm). SIA plus aPCC (0.5 U mL-1 ) increased the peak thrombin level 17-fold over SIA alone, exceeding the reference plasma value by 4.2-fold. This hypercoagulable effect occurred with 600 nmSIA combined with as little as 0.25 U mL-1 aPCC, confirmed by ROTEM. FIX was the main driver for enhanced TG. SIA plus rFVIIa (1.75 μg mL-1 ) induced a 1.8-fold increase in the peak thrombin level in platelet-rich plasma, but it did not reach the normal range. These in vitro experiments demonstrate excessive TG after administration of a combination of aPCC and SIA at clinically relevant doses. Careful judgement may be required when breakthrough bleeding is treated in patients receiving emicizumab.
Collapse
|
12
|
Brouns SLN, van Geffen JP, Heemskerk JWM. High-throughput measurement of human platelet aggregation under flow: application in hemostasis and beyond. Platelets 2018. [DOI: 10.1080/09537104.2018.1447660] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sanne L. N. Brouns
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johanna P. van Geffen
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Taune V, Wallén H, Ågren A, Gryfelt G, Sjövik C, Wintler AM, Malmström RE, Wikman A, Skeppholm M. Whole blood coagulation assays ROTEM and T-TAS to monitor dabigatran treatment. Thromb Res 2017; 153:76-82. [DOI: 10.1016/j.thromres.2017.03.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 02/22/2017] [Accepted: 03/15/2017] [Indexed: 01/19/2023]
|
14
|
Nagy M, Heemskerk JWM, Swieringa F. Use of microfluidics to assess the platelet-based control of coagulation. Platelets 2017; 28:441-448. [PMID: 28358995 DOI: 10.1080/09537104.2017.1293809] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper provides an overview of the various types of microfluidic devices that are employed to study the complex processes of platelet activation and blood coagulation in whole blood under flow conditions. We elaborate on how these devices are used to detect impaired platelet-dependent fibrin formation in blood from mice or patients with specific bleeding disorders. We provide a practical guide on how to assess formation of a platelet-fibrin thrombus under flow, using equipment that is present in most laboratories. In addition, we describe current insights on how blood flow and shear rate alter the location of platelet populations, von Willebrand factor, coagulation factors, and fibrin in a growing thrombus. Finally, we discuss possibilities and limitations for the clinical use of microfluidic devices to evaluate a hemostatic or prothrombotic tendency in patient blood samples.
Collapse
Affiliation(s)
- Magdolna Nagy
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Johan W M Heemskerk
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands
| | - Frauke Swieringa
- a Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM) , Maastricht University , Maastricht , The Netherlands.,b Department of Bioanalytics , Leibniz Institute for Analytical Sciences - ISAS- e.V. , Dortmund , Germany
| |
Collapse
|