1
|
Deng J, Leijten E, Nordkamp MO, Zheng G, Pouw J, Tao W, Hartgring S, Balak D, Rijken R, Huang R, Radstake T, Lu C, Pandit A. Multi-omics integration reveals a core network involved in host defence and hyperkeratinization in psoriasis. Clin Transl Med 2022; 12:e976. [PMID: 36536476 PMCID: PMC9763538 DOI: 10.1002/ctm2.976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES The precise pathogenesis of psoriasis remains incompletely explored. We aimed to better understand the underlying mechanisms of psoriasis, using a systems biology approach based on transcriptomics and microbiome profiling. METHODS We collected the skin tissue biopsies and swabs in both lesional and non-lesional skin of 13 patients with psoriasis, 15 patients with psoriatic arthritis and healthy skin from 12 patients with ankylosing spondylitis. To study the similarities and differences in the molecular profiles between these three conditions, and the associations between the host defence and microbiota composition, we performed high-throughput RNA-sequencing to quantify the gene expression profile in tissues. The metagenomic composition of 16S on local skin sites was quantified by clustering amplicon sequences and counted into operational taxonomic units. We further analysed associations between the transcriptome and microbiome profiling. RESULTS We found that lesional and non-lesional samples were remarkably different in terms of their transcriptome profiles. The functional annotation of differentially expressed genes showed a major enrichment in neutrophil activation. By using co-expression gene networks, we identified a gene module that was associated with local psoriasis severity at the site of biopsy. From this module, we found a 'core' set of genes that was functionally involved in neutrophil activation, epidermal cell differentiation and response to bacteria. Skin microbiome analysis revealed that the abundances of Enhydrobacter, Micrococcus and Leptotrichia were significantly correlated with the genes in core network. CONCLUSIONS We identified a core gene network that associated with local disease severity and microbiome composition, involved in the inflammation and hyperkeratinization in psoriatic skin.
Collapse
Affiliation(s)
- Jingwen Deng
- Guangdong Provincial Hospital of Chinese MedicineGuangzhou University of Chinese MedicineGuangzhouChina
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Emmerik Leijten
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Michel Olde Nordkamp
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Guangjuan Zheng
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Juliëtte Pouw
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Weiyang Tao
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Sarita Hartgring
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Deepak Balak
- Department of DermatologyLangeLand HospitalZoetermeerThe Netherlands
| | - Rianne Rijken
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Runyue Huang
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Timothy Radstake
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- Department of Rheumatology and Clinical ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Chuanjian Lu
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Aridaman Pandit
- Center for Translational ImmunologyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
2
|
Shi L, Liu C, Xiong H, Shi D. Elevation of IgE in patients with psoriasis: Is it a paradoxical phenomenon? Front Med (Lausanne) 2022; 9:1007892. [PMID: 36314037 PMCID: PMC9606585 DOI: 10.3389/fmed.2022.1007892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/26/2022] [Indexed: 11/25/2022] Open
Abstract
Immunoglobulin E (IgE) elevation is a hallmark of allergic conditions such as atopic dermatitis (AD). The pathogenesis of AD is typically associated with high levels of IL-4 and IL-13 produced by activated T helper 2 (Th2) cells. Psoriasis, on the other hand, is an inflammatory skin disease mainly driven by Th17 cells and their related cytokines. Although the immunopathologic reactions and clinical manifestations are often easily distinguished in the two skin conditions, patients with psoriasis may sometimes exhibit AD-like manifestations, such as elevated IgE and persistent pruritic lesions. Given the fact that the effective T cells have great plasticity to re-differentiate in response to innate and environmental factors, this unusual skin condition could be a consequence of a cross-reaction between distinct arms of T-cell and humoral immunity. Here we review the literature concerning the roles of IgE in the development of AD and psoriasis, showing that elevated IgE seems to be an important indicator for this non-typical psoriasis.
Collapse
Affiliation(s)
- Leyao Shi
- The Second Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China,The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Chen Liu
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China
| | - Huabao Xiong
- Basic Medical School, Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, China,Huabao Xiong
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No. 1 People's Hospital, Jining, China,Department of Dermatology, Jining No.1 People's Hospital, Jining, China,*Correspondence: Dongmei Shi
| |
Collapse
|
3
|
Kocaaga A, Kocaaga M. Psoriasis: An Immunogenetic Perspective. Glob Med Genet 2022; 9:82-89. [PMID: 35707771 PMCID: PMC9192173 DOI: 10.1055/s-0042-1743259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/29/2021] [Indexed: 11/09/2022] Open
Abstract
Psoriasis is an erythematous-squamous dermatosis with a polygenic inheritance history. Both environmental and genetic factors play a role in the etiology of the disease. Over the past two decades, numerous linkage analyzes and genome-wide association studies have been conducted to investigate the role of genetic variation in disease pathogenesis and progression. To date, >70 psoriasis susceptibility loci have been identified, including HLA-Cw6, IL12B, IL23R, and LCE3B/3C. Some genetic markers are used in clinical diagnosis, prognosis, treatment, and personalized new drug development that can further explain the pathogenesis of psoriasis. This review summarizes the immunological mechanisms involved in the etiopathogenesis of psoriasis and recent advances in susceptibility genes and highlights new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Ayca Kocaaga
- Department of Medical Genetics, Eskişehir City Hospital, Eskisehir, Turkey
| | - Mustafa Kocaaga
- Department of Medical Microbiology, Yunus Emre State Hospital, Eskisehir, Turkey
| |
Collapse
|
4
|
Evaluation of the relationship of IL-17A and IL-17F gene polymorphisms with the response to treatment in psoriatic patients using biological drugs: a case-control study in patients in Eastern Turkey. Postepy Dermatol Alergol 2021; 38:780-787. [PMID: 34849124 PMCID: PMC8610063 DOI: 10.5114/ada.2020.95383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/25/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction IL-17A and IL-17F cytokines have important roles in the pathogenesis of psoriasis. Aim To examine the associations of IL-17A rs2275913 and IL-17F rs763780 variants with the development of psoriasis and whether these polymorphisms affect the responsiveness of biological agents. Material and methods In our case-controlled study, which included 83 psoriatic patients who were treated with different biological agents and 69 healthy controls, we genotyped IL-17A rs2275913 and IL-17F rs763780 variants using TaqMan probes. Results We did not observe statistically significant changes in genotype frequencies of IL-17A rs2275913 (p = 0.922) and IL-17F rs763780 (p = 0.621) variants between patient and control groups. Although we did not find any association between these polymorphisms and the development of psoriasis, statistical analyses showed that individuals with the IL-17A AA genotype had shorter disease duration (9.09 ±6.82, p = 0.020) and AA genotype frequency was higher in patients who used single conventional treatment (34.6%; p = 0.025). IL17A/rs2275913 variant in terms of disease duration, it was observed that individuals with AA genotype had a shorter disease duration (less than 10 years) (p = 0.009). For patients with PASI90 and PASI100 response, the IL-17A AA genotype was significantly higher (p = 0.015). On the other hand, we did not detect any statistically significant correlation between variants and response to biological agents. Conclusions According to our results, we may suggest that rs2275913 variant seems to be associated with disease duration, use of single conventional treatment and responsiveness of PASI90 and PASI100 however both variants have no effect on the susceptibility to psoriasis in the population of Eastern Turkey.
Collapse
|
5
|
Orsmond A, Bereza-Malcolm L, Lynch T, March L, Xue M. Skin Barrier Dysregulation in Psoriasis. Int J Mol Sci 2021; 22:10841. [PMID: 34639182 PMCID: PMC8509518 DOI: 10.3390/ijms221910841] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 02/07/2023] Open
Abstract
The skin barrier is broadly composed of two elements-a physical barrier mostly localised in the epidermis, and an immune barrier localised in both the dermis and epidermis. These two systems interact cooperatively to maintain skin homeostasis and overall human health. However, if dysregulated, several skin diseases may arise. Psoriasis is one of the most prevalent skin diseases associated with disrupted barrier function. It is characterised by the formation of psoriatic lesions, the aberrant differentiation and proliferation of keratinocytes, and excessive inflammation. In this review, we summarize recent discoveries in disease pathogenesis, including the contribution of keratinocytes, immune cells, genetic and environmental factors, and how they advance current and future treatments.
Collapse
Affiliation(s)
- Andreas Orsmond
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lara Bereza-Malcolm
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Tom Lynch
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| | - Meilang Xue
- Sutton Arthritis Research Laboratory, Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (A.O.); (L.B.-M.)
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Faculty of Medicine and Health, Institute of Bone and Joint Research, Kolling Institute, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia; (T.L.); (L.M.)
| |
Collapse
|
6
|
Zhou Y, Gao L, Xia P, Zhao J, Li W, Zhou Y, Wei Q, Wu Q, Wu Q, Sun D, Gao K. Glycyrrhetinic Acid Protects Renal Tubular Cells against Oxidative Injury via Reciprocal Regulation of JNK-Connexin 43-Thioredoxin 1 Signaling. Front Pharmacol 2021; 12:619567. [PMID: 33603672 PMCID: PMC7884636 DOI: 10.3389/fphar.2021.619567] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
Background and Objective: The incidence of chronic kidney disease (CKD) is steadily increasing. Although renal tubular epithelium injury is closely correlated with the prognosis of CKD, the underlying mechanism is not fully understood and therapeutic strategies are limited. The main bioactive component of the Chinese medicine herb, glycyrrhiza, is 18α-glycyrrhetinic acid (Ga), which is also a pharmacological inhibitor of gap junctions. Our previous studies indicated that Ga is able to ameliorate renal cell injury. The present study explored the regulatory role of Ga in redox signaling in renal tubular epithelial cells with oxidative injury. Methods: Rat renal tubular epithelial cells, NRK-52E, were incubated with Px-12, a thioredoxin inhibitor, to mimic thioredoxin deficiency and induce oxidative injury in vitro. A Cell Counting Kit-8 was used to analyze cell viability while a reactive oxygen species (ROS)/superoxide (O2 -) fluorescence probe was employed to determine oxidative stress. Apoptosis was evaluated using DT-mediated dUTP nick end labeling/4,6-diamidino-2-phenylindole staining and cleaved caspase 3 protein analysis. Western blot analysis was used to analyze the expression of specific proteins while siRNA transfection was performed to downregulate targeted proteins. Results: Inhibition of thioredoxin 1 by Px-12 triggered renal tubular cell oxidative injury as evidenced by morphological change, loss of cellular viability, over production of ROS and O2 -, and appearance of cleaved caspase-3. Ga significantly attenuated cell oxidative injury, as indicated by the parameters mentioned above. Px-12 induced phosphorylation of c-Jun N-terminal kinase (JNK) and subsequently the expression of connexin 43 (Cx43) in NRK-52E cells. Ga and the JNK inhibitor, sp600125, markedly suppressed Px-12-induced generation of intracellular ROS and O2 -. Inhibition of JNK improved Px-12-elicited NRK-52E cell injury. Moreover, sp600125 inhibited Cx43 expression. After downregulation of Cx43 via Cx43 siRNA transfection, the phosphorylation of JNK was markedly reduced. Furthermore, Ga restored the expression of thioredoxin 1 inhibited by Px-12. Conclusion: ROS-JNK-Cx43-thioredoxin 1 signaling plays a crucial role in renal tubular cell injury. JNK is involved in the regulation of thioredoxin 1 and Cx43, and Cx43 reciprocally regulates thioredoxin 1. Inhibition of gap junctions by Ga alleviated renal tubular oxidative injury via improvement of thioredoxin 1-mediated redox signaling.
Collapse
Affiliation(s)
- Yao Zhou
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, China.,Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Leiping Gao
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Ping Xia
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Zhao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yufeng Zhou
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Qingxue Wei
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Qijing Wu
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qi Wu
- Department of Pathophysiology, Xuzhou Medical University, Xuzhou, China
| | - Dongdong Sun
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Gao
- Division of Nephrology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
7
|
Garcia-Vega L, O’Shaughnessy EM, Albuloushi A, Martin PE. Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26. BIOLOGY 2021; 10:biology10010059. [PMID: 33466954 PMCID: PMC7829877 DOI: 10.3390/biology10010059] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Simple Summary Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue. These proteins form communication conduits with the extracellular space (hemichannels) and between neighboring cells (gap junctions). Regulated exchange of small metabolites less than 1kDa aide the co-ordination of cellular activities and in spatial communication compartments segregating tissue networks. Dysregulation of connexin expression and function has profound impact on physiological processes in epithelial tissue including wound healing. Connexin 26, one of the smallest connexins, is expressed in diverse epithelial tissue and mutations in this protein are associated with hearing loss, skin and eye conditions of differing severity. The functional consequences of dysregulated connexin activity is discussed and the development of connexin targeted therapeutic strategies highlighted.
Collapse
|
8
|
Psoriasin and rs4819554 of IL-17RA gene polymorphism in psoriasis. Arch Dermatol Res 2020; 312:459. [DOI: 10.1007/s00403-020-02055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/15/2020] [Accepted: 02/26/2020] [Indexed: 11/27/2022]
|