1
|
Jeswani BM, Sharma S, Rathore SS, Nazir A, Bhatheja R, Kapoor K. PCSK9 Inhibitors: The Evolving Future. Health Sci Rep 2024; 7:e70174. [PMID: 39479289 PMCID: PMC11522611 DOI: 10.1002/hsr2.70174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction PCSK9 inhibitors are a novel class of medications that lower LDL cholesterol (LDL-C) by increasing LDL receptor activity, promoting clearance of LDL-C from the bloodstream. Over the years, PCSK9 inhibitors have been explored as adjunct therapies to statins or as monotherapy in high-risk cardiovascular patients. Aim This review aims to provide an updated perspective on PCSK9 inhibitors, assessing their clinical efficacy, safety, and significance, especially in light of recent clinical trials. Methods The review examines the role of PCSK9 in cholesterol regulation and summarizes the results of major cardiovascular trials, including FOURIER, SPIRE-1, SPIRE-2, and ODYSSEY Outcomes. It also discusses emerging treatments like small interfering RNA (siRNA) therapies and evaluates PCSK9 inhibitor effects on LDL-C and lipoprotein(a) levels. Results Clinical trials have shown PCSK9 inhibitors reduce LDL-C by up to 60%. In the FOURIER trial, evolocumab reduced LDL-C by 59% and major cardiovascular events by 15%-20%. The SPIRE-2 trial, despite early termination, showed a 21% risk reduction in the primary composite endpoint with bococizumab. The ODYSSEY Outcomes trial reported a 57% LDL-C reduction with alirocumab, alongside a 15% reduction in adverse events. Emerging treatments like Inclisiran offer long-term LDL-C control with fewer doses. PCSK9 inhibitors are generally well-tolerated, with the most common side effect being injection site reactions. Conclusion PCSK9 inhibitors significantly lower LDL-C and reduce cardiovascular events, offering promising therapies for high-risk patients, including those with familial hypercholesterolemia (FH) and those who cannot tolerate statins. Future research will focus on optimizing these inhibitors, integrating complementary therapies, and exploring gene-editing technologies to improve patient outcomes.
Collapse
Affiliation(s)
- Bijay Mukesh Jeswani
- Department of MedicineGCS Medical College, Hospital & Research CentreAhmedabadIndia
| | | | | | - Abubakar Nazir
- Department of MedicineKing Edward Medical UniversityLahorePakistan
- Department of MedicineOli Health Magazine Organization, Research, and EducationKigaliRwanda
| | | | - Kapil Kapoor
- Cardiology, AdventHealth OrlandoOrlandoFloridaUSA
| |
Collapse
|
2
|
Rogozik J, Główczyńska R, Grabowski M. Genetic backgrounds and diagnosis of familial hypercholesterolemia. Clin Genet 2024; 105:3-12. [PMID: 37849044 DOI: 10.1111/cge.14435] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Lipid disorders play a critical role in the intricate development of atherosclerosis and its clinical consequences, such as coronary heart disease and stroke. These disorders are responsible for a significant number of deaths in many adult populations worldwide. Familial hypercholesterolemia (FH) is a genetic disorder that causes extremely high levels of LDL cholesterol. The most common mutations occur in genes responsible for low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), or proprotein convertase subtilisin/kexin type 9 (PCSK9). While genetic testing is a dependable method for diagnosing the disease, it may not detect primary mutations in 20%-40% of FH cases.
Collapse
Affiliation(s)
- Joanna Rogozik
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Renata Główczyńska
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Grabowski
- 1st Department of Cardiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Tokgozoglu L, Kayikcioglu M. Familial Hypercholesterolemia: Global Burden and Approaches. Curr Cardiol Rep 2021; 23:151. [PMID: 34480646 DOI: 10.1007/s11886-021-01565-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/29/2021] [Indexed: 02/06/2023]
Abstract
PURPOSE OF REVIEW Familial hypercholesterolemia (FH) is the most common genetic metabolic disorder characterized by markedly elevated LDL-C levels from birth leading to atherosclerotic cardiovascular disease (ASCVD) and premature deaths. The purpose of this review is to share the current knowledge in the diagnosis, risk estimation, and management of patients with FH in the light of recent evidence and guideline recommendations. RECENT FINDINGS Recent registries underscored the prevalence of FH as 1/200-250 translating to an almost 1500 million subjects suffering from FH worldwide. However, only a minority of FH patients are identified early and effectively treated. In most cases, mutations in the LDL-receptor (LDLR) gene and to a lesser degree in the apolipoprotein B-100 (APOB), proprotein convertase subtilisin/kexin type 9 (PCSK9), and the LDL-receptor adaptor protein 1 (LDLRAP1) genes cause FH. Diagnostic scores such as Dutch Lipid Clinic Network criteria using clinical manifestations are helpful in identifying FH. Traditional risk factors and high lipoprotein(a) affect the course of the disease. Vascular ultrasound imaging and coronary calcium scoring are helpful for further risk estimation of these patients. Getting to LDL-C goals is possible with currently available treatments including statins, ezetimibe, and PCSK9 inhibitors, as well as lipoprotein apheresis, lomitapide, and mipomersen in more severe phenotypes. Additionally, novel agents bempedoic acid, inclisiran, and evinacumab expanded the treatment choices for some patients with FH. Early diagnosis and initiation of LDL-C lowering are still required to achieve the greatest reduction in ASCVD morbidity and mortality in patients with FH. FH is a common genetic disorder characterized by markedly elevated LDL-C levels from birth onward, resulting in significantly increased risk for ASCVD. Despite major advances in our understanding of the disease and effective therapies, FH is still underdiagnosed and undertreated. Early initiation of LDL-C lowering by increased awareness of FH among the healthcare professionals, patients, and the public is necessary to achieve meaningful reduction in ASCVD morbidity and mortality in these patients.
Collapse
Affiliation(s)
- Lale Tokgozoglu
- Department of Cardiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Meral Kayikcioglu
- Department of Cardiology, Faculty of Medicine, Ege University, İzmir, Turkey.
| |
Collapse
|
4
|
PCSK9: A Multi-Faceted Protein That Is Involved in Cardiovascular Biology. Biomedicines 2021; 9:biomedicines9070793. [PMID: 34356856 PMCID: PMC8301306 DOI: 10.3390/biomedicines9070793] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/29/2022] Open
Abstract
Pro-protein convertase subtilisin/kexin type 9 (PCSK9) is secreted mostly by hepatocytes and to a lesser extent by the intestine, pancreas, kidney, adipose tissue, and vascular cells. PCSK9 has been known to interact with the low-density lipoprotein receptor (LDLR) and chaperones the receptor to its degradation. In this manner, targeting PCSK9 is a novel attractive approach to reduce hyperlipidaemia and the risk for cardiovascular diseases. Recently, it has been recognised that the effects of PCSK9 in relation to cardiovascular complications are not only LDLR related, but that various LDLR-independent pathways and processes are also influenced. In this review, the various LDLR dependent and especially independent effects of PCSK9 on the cardiovascular system are discussed, followed by an overview of related PCSK9-polymorphisms and currently available and future therapeutic approaches to manipulate PCSK9 expression.
Collapse
|
5
|
Miroshnikova VV, Romanova OV, Ivanova ON, Fedyakov MA, Panteleeva AA, Barbitoff YA, Muzalevskaya MV, Urazgildeeva SA, Gurevich VS, Urazov SP, Scherbak SG, Sarana AM, Semenova NA, Anisimova IV, Guseva DM, Pchelina SN, Glotov AS, Zakharova EY, Glotov OS. Identification of novel variants in the LDLR gene in Russian patients with familial hypercholesterolemia using targeted sequencing. Biomed Rep 2020; 14:15. [PMID: 33269076 PMCID: PMC7694592 DOI: 10.3892/br.2020.1391] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022] Open
Abstract
Familial hypercholesterolemia (FH) is caused by mutations in various genes, including the LDLR, APOB and PSCK9 genes; however, the spectrum of these mutations in Russian individuals has not been fully investigated. In the present study, mutation screening was performed on the LDLR gene and other FH-associated genes in patients with definite or possible FH, using next-generation sequencing. In total, 59 unrelated patients were recruited and sorted into two separate groups depending on their age: Adult (n=31; median age, 49; age range, 23-70) and children/adolescent (n=28; median age, 11; age range, 2-21). FH-associated variants were identified in 18 adults and 25 children, demonstrating mutation detection rates of 58 and 89% for the adult and children/adolescent groups, respectively. In the adult group, 13 patients had FH-associated mutations in the LDLR gene, including two novel variants [NM_000527.4: c.433_434dupG p.(Val145Glyfs*35) and c.1186G>C p.(Gly396Arg)], 3 patients had APOB mutations and two had ABCG5/G8 mutations. In the children/adolescent group, 21 patients had FH-causing mutations in the LDLR gene, including five novel variants [NM_000527.4: c.325T>G p.(Cys109Gly), c.401G>C p.(Cys134Ser), c.616A>C p.(Ser206Arg), c.1684_1691delTGGCCCAA p.(Pro563Hisfs*14) and c.940+1_c.940+4delGTGA], and 2 patients had APOB mutations, as well as ABCG8 and LIPA mutations, being found in different patients. The present study reported seven novel LDLR variants considered to be pathogenic or likely pathogenic. Among them, four missense variants were located in the coding regions, which corresponded to functional protein domains, and two frameshifts were identified that produced truncated proteins. These variants were observed only once in different patients, whereas a splicing variant in intron 6 (c.940+1_c.940+4delGTGA) was detected in four unrelated individuals. Previously reported variants in the LDLR, APOB, ABCG5/8 and LIPA genes were observed in 33 patients. The LDLR p.(Gly592Glu) variant was detected in 6 patients, representing 10% of the FH cases reported in the present study, thus it may be a major variant present in the Russian population. In conclusion, the present study identified seven novel variants of the LDLR gene and broadens the spectrum of mutations in FH-related genes in the Russian Federation.
Collapse
Affiliation(s)
- Valentina V Miroshnikova
- Laboratory of Human Molecular Genetics, Molecular and Radiation Biophysics Department, Petersburg Nuclear Physics Institute, National Research Center 'Kurchatov Institute', Gatchina 188300, Russian Federation
| | - Olga V Romanova
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation.,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproduction, Saint-Petersburg 199034, Russian Federation
| | - Olga N Ivanova
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Mikhail A Fedyakov
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation
| | - Alexandra A Panteleeva
- Laboratory of Human Molecular Genetics, Molecular and Radiation Biophysics Department, Petersburg Nuclear Physics Institute, National Research Center 'Kurchatov Institute', Gatchina 188300, Russian Federation.,Kurchatov Complex of NBICS Nature-Like Technologies of National Research Center 'Kurchatov Institute', Moscow 123182, Russian Federation.,Molecular-Genetic and Nanobiological Technology Department of Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russian Federation.,Bioinformatics Institute, Saint-Petersburg 197342, Russian Federation
| | - Yury A Barbitoff
- Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproduction, Saint-Petersburg 199034, Russian Federation.,Bioinformatics Institute, Saint-Petersburg 197342, Russian Federation
| | - Maria V Muzalevskaya
- Department for Atherosclerosis and Lipid Disorders of North-Western District Scientific and Clinical Center Named After L.G. Sokolov FMBA, Saint-Petersburg 194291, Russian Federation.,Medical Faculty of Saint-Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Sorejya A Urazgildeeva
- Department for Atherosclerosis and Lipid Disorders of North-Western District Scientific and Clinical Center Named After L.G. Sokolov FMBA, Saint-Petersburg 194291, Russian Federation.,Medical Faculty of Saint-Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Victor S Gurevich
- Department for Atherosclerosis and Lipid Disorders of North-Western District Scientific and Clinical Center Named After L.G. Sokolov FMBA, Saint-Petersburg 194291, Russian Federation.,Medical Faculty of Saint-Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Stanislav P Urazov
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation
| | - Sergey G Scherbak
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation
| | - Andrey M Sarana
- Medical Faculty of Saint-Petersburg State University, Saint-Petersburg 199034, Russian Federation
| | - Natalia A Semenova
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Inga V Anisimova
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Darya M Guseva
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Sofya N Pchelina
- Laboratory of Human Molecular Genetics, Molecular and Radiation Biophysics Department, Petersburg Nuclear Physics Institute, National Research Center 'Kurchatov Institute', Gatchina 188300, Russian Federation.,Kurchatov Complex of NBICS Nature-Like Technologies of National Research Center 'Kurchatov Institute', Moscow 123182, Russian Federation.,Molecular-Genetic and Nanobiological Technology Department of Scientific Research Center, Pavlov First Saint-Petersburg State Medical University, Saint-Petersburg 197022, Russian Federation
| | - Andrey S Glotov
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation.,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproduction, Saint-Petersburg 199034, Russian Federation
| | - Ekaterina Y Zakharova
- Laboratory of Hereditary Metabolic Diseases and Counselling Unit of Federal State Budgetary Institution 'Research Centre for Medical Genetics', Moscow 115522, Russian Federation
| | - Oleg S Glotov
- Genetic Laboratory of City Hospital No. 40, Saint-Petersburg, 197706, Russian Federation.,Department of Genomic Medicine, D.O. Ott Research Institute of Obstetrics, Gynaecology and Reproduction, Saint-Petersburg 199034, Russian Federation
| |
Collapse
|
6
|
Structural and Molecular Interaction Studies on Familial Hypercholesterolemia Causative PCSK9 Functional Domain Mutations Reveals Binding Affinity Alterations with LDLR. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10121-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Guo Q, Feng X, Zhou Y. PCSK9 Variants in Familial Hypercholesterolemia: A Comprehensive Synopsis. Front Genet 2020; 11:1020. [PMID: 33173529 PMCID: PMC7538608 DOI: 10.3389/fgene.2020.01020] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 01/22/2023] Open
Abstract
Autosomal dominant familial hypercholesterolemia (FH) affects approximately 1/250, individuals and potentially leads to elevated blood cholesterol and a significantly increased risk of atherosclerosis. Along with improvements in detection and the increased early diagnosis and treatment, the serious burden of FH on families and society has become increasingly apparent. Since FH is strongly associated with proprotein convertase subtilisin/kexin type 9 (PCSK9), increasing numbers of studies have focused on finding effective diagnostic and therapeutic methods based on PCSK9. At present, as PCSK9 is one of the main pathogenic FH genes, its contribution to FH deserves more explorative research.
Collapse
Affiliation(s)
- Qianyun Guo
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Xunxun Feng
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| | - Yujie Zhou
- Beijing Key Laboratory of Precision Medicine of Coronary Atherosclerotic Disease, Department of Cardiology, Beijing Anzhen Hospital, Clinical Center for Coronary Heart Disease, Beijing Institute of Heart Lung and Blood Vessel Disease, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Sarkar SK, Foo ACY, Matyas A, Asikhia I, Kosenko T, Goto NK, Vergara-Jaque A, Lagace TA. A transient amphipathic helix in the prodomain of PCSK9 facilitates binding to low-density lipoprotein particles. J Biol Chem 2020; 295:2285-2298. [PMID: 31949048 PMCID: PMC7039556 DOI: 10.1074/jbc.ra119.010221] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 01/13/2020] [Indexed: 01/07/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type-9 (PCSK9) is a ligand of low-density lipoprotein (LDL) receptor (LDLR) that promotes LDLR degradation in late endosomes/lysosomes. In human plasma, 30–40% of PCSK9 is bound to LDL particles; however, the physiological significance of this interaction remains unknown. LDL binding in vitro requires a disordered N-terminal region in PCSK9's prodomain. Here, we report that peptides corresponding to a predicted amphipathic α-helix in the prodomain N terminus adopt helical structure in a membrane-mimetic environment. This effect was greatly enhanced by an R46L substitution representing an atheroprotective PCSK9 loss-of-function mutation. A helix-disrupting proline substitution within the putative α-helical motif in full-length PCSK9 lowered LDL binding affinity >5-fold. Modeling studies suggested that the transient α-helix aligns multiple polar residues to interact with positively charged residues in the C-terminal domain. Gain-of-function PCSK9 mutations associated with familial hypercholesterolemia (FH) and clustered at the predicted interdomain interface (R469W, R496W, and F515L) inhibited LDL binding, which was completely abolished in the case of the R496W variant. These findings shed light on allosteric conformational changes in PCSK9 required for high-affinity binding to LDL particles. Moreover, the initial identification of FH-associated mutations that diminish PCSK9's ability to bind LDL reported here supports the notion that PCSK9-LDL association in the circulation inhibits PCSK9 activity.
Collapse
Affiliation(s)
- Samantha K Sarkar
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Alexander C Y Foo
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Angela Matyas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Ikhuosho Asikhia
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Tanja Kosenko
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada
| | - Natalie K Goto
- Department of Chemistry and Biomolecular Sciences, Faculty of Science, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ariela Vergara-Jaque
- Center for Bioinformatics and Molecular Simulation, Universidad de Talca, Talca, Chile; Millennium Nucleus of Ion Channels-associated Diseases (MiNICAD), 3460000 Talca, Chile
| | - Thomas A Lagace
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y 4W7, Canada.
| |
Collapse
|
9
|
Case-control study on PCSK9 R496W (rs374603772) and D374Y (rs137852912) mutations in Turkish patients with primary dyslipidemia. Anatol J Cardiol 2019; 19:334-340. [PMID: 29724976 PMCID: PMC6280272 DOI: 10.14744/anatoljcardiol.2018.86648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Objective: The aim of this study was to investigate the relationships between F216L (rs28942112), R496W (rs374603772), S127R (rs28942111), and D374Y (rs137852912) PCSK9 gain-of-function (GOF) mutations and primary dyslipidemia and serum lipid levels in patients with primary dyslipidemia. Methods: In this case-control study, DNA was isolated from blood samples collected from patients diagnosed with primary dyslipidemia in cardiology outpatient clinic of Ege University (n=200) and healthy individuals (n=201). F216L, R496W, S127R, and D374Y GOF mutations in the PCSK9 gene were evaluated and genotyped according to the results of melting curve analysis performed in a real-time polymerase chain reaction (PCR) 480 instrument using specific primers for each mutation. Results: There were statistically significant differences between the patient and individuals in control groups in the R496W and D374Y mutations (χ2=10.742 p=0.005; χ2=6.078 p=0.048, respectively). In addition, triglyceride levels in patients with primary dyslipidemia heterozygous for R496W and D374Y mutations were 12.8-fold (p=0.015) and 3.4-fold (p=0.03) higher than that in mutant and wild-type genotype, respectively. Additionally, in the entire study group (n=401), PCSK9 R496W and D374Y mutation carriers had increased total cholesterol (p=0.021), triglycerides (p=0.0001), HDL cholesterol (p=0.028), and low-density lipoproteins (LDL) cholesterol (p=0.028) levels. However, F216L (rs28942112) and S127R (rs28942111) mutations were not detected in patients with primary dyslipidemia and healthy controls. Conclusion: We conclude that the PCSK9 R496W (rs374603772) and D374Y (rs137852912) GOF mutations may be significant risk factors in the development of primary dyslipidemia and may have significant impact on lipid parameters in general population.
Collapse
|
10
|
Carreras A, Pane LS, Nitsch R, Madeyski-Bengtson K, Porritt M, Akcakaya P, Taheri-Ghahfarokhi A, Ericson E, Bjursell M, Perez-Alcazar M, Seeliger F, Althage M, Knöll R, Hicks R, Mayr LM, Perkins R, Lindén D, Borén J, Bohlooly-Y M, Maresca M. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biol 2019; 17:4. [PMID: 30646909 PMCID: PMC6334452 DOI: 10.1186/s12915-018-0624-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022] Open
Abstract
Background Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. Results To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. Conclusions Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia. Electronic supplementary material The online version of this article (10.1186/s12915-018-0624-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba Carreras
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.,Present Address: Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Luna Simona Pane
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Roberto Nitsch
- Advanced Medicines Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Katja Madeyski-Bengtson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Michelle Porritt
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Pinar Akcakaya
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Amir Taheri-Ghahfarokhi
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Elke Ericson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Mikael Bjursell
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Marta Perez-Alcazar
- Pathology Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ralph Knöll
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lorenz M Mayr
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.,Present Address: GE Healthcare Life Sciences, The Grove Centre, White Lion Road, Amersham, UK
| | - Rosie Perkins
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Lindén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mohammad Bohlooly-Y
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.
| |
Collapse
|
11
|
Carreras A, Pane LS, Nitsch R, Madeyski-Bengtson K, Porritt M, Akcakaya P, Taheri-Ghahfarokhi A, Ericson E, Bjursell M, Perez-Alcazar M, Seeliger F, Althage M, Knöll R, Hicks R, Mayr LM, Perkins R, Lindén D, Borén J, Bohlooly-Y M, Maresca M. In vivo genome and base editing of a human PCSK9 knock-in hypercholesterolemic mouse model. BMC Biol 2019. [PMID: 30646909 DOI: 10.1186/s12915-018-0624-2.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Plasma concentration of low-density lipoprotein (LDL) cholesterol is a well-established risk factor for cardiovascular disease. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9), which regulates cholesterol homeostasis, has recently emerged as an approach to reduce cholesterol levels. The development of humanized animal models is an important step to validate and study human drug targets, and use of genome and base editing has been proposed as a mean to target disease alleles. RESULTS To address the lack of validated models to test the safety and efficacy of techniques to target human PCSK9, we generated a liver-specific human PCSK9 knock-in mouse model (hPCSK9-KI). We showed that plasma concentrations of total cholesterol were higher in hPCSK9-KI than in wildtype mice and increased with age. Treatment with evolocumab, a monoclonal antibody that targets human PCSK9, reduced cholesterol levels in hPCSK9-KI but not in wildtype mice, showing that the hypercholesterolemic phenotype was driven by overexpression of human PCSK9. CRISPR-Cas9-mediated genome editing of human PCSK9 reduced plasma levels of human and not mouse PCSK9, and in parallel reduced plasma concentrations of total cholesterol; genome editing of mouse Pcsk9 did not reduce cholesterol levels. Base editing using a guide RNA that targeted human and mouse PCSK9 reduced plasma levels of human and mouse PCSK9 and total cholesterol. In our mouse model, base editing was more precise than genome editing, and no off-target editing nor chromosomal translocations were identified. CONCLUSIONS Here, we describe a humanized mouse model with liver-specific expression of human PCSK9 and a human-like hypercholesterolemia phenotype, and demonstrate that this mouse can be used to evaluate antibody and gene editing-based (genome and base editing) therapies to modulate the expression of human PCSK9 and reduce cholesterol levels. We predict that this mouse model will be used in the future to understand the efficacy and safety of novel therapeutic approaches for hypercholesterolemia.
Collapse
Affiliation(s)
- Alba Carreras
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.,Present Address: Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Luna Simona Pane
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Roberto Nitsch
- Advanced Medicines Safety, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Katja Madeyski-Bengtson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Michelle Porritt
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Pinar Akcakaya
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Amir Taheri-Ghahfarokhi
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Elke Ericson
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Mikael Bjursell
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden
| | - Marta Perez-Alcazar
- Pathology Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Frank Seeliger
- Pathology Science, Drug Safety and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Magnus Althage
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ralph Knöll
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Ryan Hicks
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Lorenz M Mayr
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.,Present Address: GE Healthcare Life Sciences, The Grove Centre, White Lion Road, Amersham, UK
| | - Rosie Perkins
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Daniel Lindén
- Cardiovascular, Renal and Metabolism, IMED Biotech Unit, AstraZeneca, Gothenburg, Sweden
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, The Wallenberg Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mohammad Bohlooly-Y
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.
| | - Marcello Maresca
- Discovery Biology, Discovery Sciences, IMED Biotech Unit, AstraZeneca, Pepparedsleden 1, Mölndal, 43 183, Gothenburg, Sweden.
| |
Collapse
|