1
|
Hsiao YT, Shimizu I, Yoshida Y, Minamino T. Role of circulating molecules in age-related cardiovascular and metabolic disorders. Inflamm Regen 2022; 42:2. [PMID: 35012677 PMCID: PMC8744343 DOI: 10.1186/s41232-021-00187-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Studies analyzing heterochronic parabiosis mice models showed that molecules in the blood of young mice rejuvenate aged mice. Therefore, blood-based therapies have become one of the therapeutic approaches to be considered for age-related diseases. Blood includes numerous biologically active molecules such as proteins, metabolites, hormones, miRNAs, etc. and accumulating evidence indicates some of these change their concentration with chronological aging or age-related disorders. The level of some circulating molecules showed a negative or positive correlation with all-cause mortality, cardiovascular events, or metabolic disorders. Through analyses of clinical/translation/basic research, some molecules were focused on as therapeutic targets. One approach is the supplementation of circulating anti-aging molecules. Favorable results in preclinical studies let some molecules to be tested in humans. These showed beneficial or neutral results, and some were inconsistent. Studies with rodents and humans indicate circulating molecules can be recognized as biomarkers or therapeutic targets mediating their pro-aging or anti-aging effects. Characterization of these molecules with aging, testing their biological effects, and finding mimetics of young systemic milieu continue to be an interesting and important research topic to be explored.
Collapse
Affiliation(s)
- Yung Ting Hsiao
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Ippei Shimizu
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
| | - Yohko Yoshida
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan
- Department of Advanced Senotherapeutics, Juntendo University Graduate School of Medicine, Tokyo, 113-8431, Japan
| | - Tohru Minamino
- Department of Cardiovascular Biology and Medicine, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8431, Japan.
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, Tokyo, 100-0004, Japan.
| |
Collapse
|
2
|
Bargieł W, Cierpiszewska K, Maruszczak K, Pakuła A, Szwankowska D, Wrzesińska A, Gutowski Ł, Formanowicz D. Recognized and Potentially New Biomarkers-Their Role in Diagnosis and Prognosis of Cardiovascular Disease. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57070701. [PMID: 34356982 PMCID: PMC8305174 DOI: 10.3390/medicina57070701] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023]
Abstract
Atherosclerosis and its consequences are the leading cause of mortality in the world. For this reason, we have reviewed atherosclerosis biomarkers and selected the most promising ones for review. We focused mainly on biomarkers related to inflammation and oxidative stress, such as the highly sensitive C-reactive protein (hs-CRP), interleukin 6 (IL-6), and lipoprotein-associated phospholipase A2 (Lp-PLA2). The microRNA (miRNA) and the usefulness of the bone mineralization, glucose, and lipid metabolism marker osteocalcin (OC) were also reviewed. The last biomarker we considered was angiogenin (ANG). Our review shows that due to the multifactorial nature of atherosclerosis, no single marker is known so far, the determination of which would unambiguously assess the severity of atherosclerosis and help without any doubt in the prognosis of cardiovascular risk.
Collapse
Affiliation(s)
- Weronika Bargieł
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Katarzyna Cierpiszewska
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Klara Maruszczak
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Anna Pakuła
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Dominika Szwankowska
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Aleksandra Wrzesińska
- Faculty of Medicine, Poznan University of Medical Sciences, 60-812 Poznan, Poland; (W.B.); (K.C.); (K.M.); (A.P.); (D.S.); (A.W.)
| | - Łukasz Gutowski
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
| | - Dorota Formanowicz
- Department of Medical Chemistry and Laboratory Medicine, Poznan University of Medical Sciences, Rokietnicka 8, 60-806 Poznan, Poland;
- Correspondence:
| |
Collapse
|
3
|
Saenz-Pipaon G, Martinez-Aguilar E, Orbe J, González Miqueo A, Fernandez-Alonso L, Paramo JA, Roncal C. The Role of Circulating Biomarkers in Peripheral Arterial Disease. Int J Mol Sci 2021; 22:ijms22073601. [PMID: 33808453 PMCID: PMC8036489 DOI: 10.3390/ijms22073601] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/18/2022] Open
Abstract
Peripheral arterial disease (PAD) of the lower extremities is a chronic illness predominantly of atherosclerotic aetiology, associated to traditional cardiovascular (CV) risk factors. It is one of the most prevalent CV conditions worldwide in subjects >65 years, estimated to increase greatly with the aging of the population, becoming a severe socioeconomic problem in the future. The narrowing and thrombotic occlusion of the lower limb arteries impairs the walking function as the disease progresses, increasing the risk of CV events (myocardial infarction and stroke), amputation and death. Despite its poor prognosis, PAD patients are scarcely identified until the disease is advanced, highlighting the need for reliable biomarkers for PAD patient stratification, that might also contribute to define more personalized medical treatments. In this review, we will discuss the usefulness of inflammatory molecules, matrix metalloproteinases (MMPs), and cardiac damage markers, as well as novel components of the liquid biopsy, extracellular vesicles (EVs), and non-coding RNAs for lower limb PAD identification, stratification, and outcome assessment. We will also explore the potential of machine learning methods to build prediction models to refine PAD assessment. In this line, the usefulness of multimarker approaches to evaluate this complex multifactorial disease will be also discussed.
Collapse
Affiliation(s)
- Goren Saenz-Pipaon
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.); (J.A.P.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
| | - Esther Martinez-Aguilar
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- Departamento de Angiología y Cirugía Vascular, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Josune Orbe
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.); (J.A.P.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Arantxa González Miqueo
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Laboratory of Heart Failure, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Leopoldo Fernandez-Alonso
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- Departamento de Angiología y Cirugía Vascular, Complejo Hospitalario de Navarra, 31008 Pamplona, Spain
| | - Jose Antonio Paramo
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.); (J.A.P.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hematology Service, Clínica Universidad de Navarra, 31008 Pamplona, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Program of Cardiovascular Diseases, Cima Universidad de Navarra, 31008 Pamplona, Spain; (G.S.-P.); (J.O.); (J.A.P.)
- IdiSNA, Instituto de Investigación Sanitaria de Navarra, 31008 Pamplona, Spain; (E.M.-A.); (A.G.M.); (L.F.-A.)
- CIBERCV, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-948194700
| |
Collapse
|