3
|
Jackson D, Pitcher M, Hudson C, Andrews N, Southern J, Ellis J, Höschler K, Pebody R, Turner PJ, Miller E, Zambon M. Viral Shedding in Recipients of Live Attenuated Influenza Vaccine in the 2016-2017 and 2017-2018 Influenza Seasons in the United Kingdom. Clin Infect Dis 2021; 70:2505-2513. [PMID: 31642899 PMCID: PMC7286380 DOI: 10.1093/cid/ciz719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/02/2019] [Indexed: 11/13/2022] Open
Abstract
Background The (H1N1)pdm09 live attenuated influenza vaccine (LAIV) strain was changed for the 2017–2018 influenza season to improve viral fitness, following poor protection against (H1N1)pdm09 viruses in 2015–2016. We conducted LAIV virus shedding studies to assess the effect of this change. Methods Children aged 2–18 years were recruited to receive LAIV in the 2016–2017 (n = 641) and 2017–2018 (n = 362) influenza seasons. Viruses from nasal swabs taken 1, 3, and 6 days postvaccination were quantified by reverse-transcription polymerase chain reaction and area under the curve titers were determined. Presence and quantity of shedding were compared between strains and seasons with adjustment for age and prior LAIV (n = 436), inactivated seasonal vaccine (n = 100), or (H1N1)pdm09 vaccine (n = 166) receipt. Results (H1N1)pdm09 detection (positivity) in 2016–2017 and 2017–2018 (11.2% and 3.9%, respectively) was lower than that of H3N2 (19.7% and 18.7%, respectively) and B/Victoria (28.9% and 33.9%, respectively). (H1N1)pdm09 positivity was higher in 2016–2017 than 2017–2018 (P = .005), but within shedding-positive participants, the (H1N1)pdm09 titer increased in 2017–2018 (P = .02). H3N2 and influenza B titers were similar between seasons. Positivity declined with age, and prior vaccination reduced the likelihood of shedding influenza B but not (H1N1)pdm09. Conclusions The (H1N1)pdm09 titer increased in 2017–2018, indicating more efficient virus replication in shedding-positive children than the 2016–2017 strain, although overall positivity was reduced. Age and vaccination history require consideration when correlating virus shedding and protection. Clinical Trials Registration NCT02143882, NCT02866942, and NCT03104790.
Collapse
Affiliation(s)
- David Jackson
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Max Pitcher
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Chris Hudson
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Nick Andrews
- Statistics, Modelling and Economics Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Jo Southern
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Joanna Ellis
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Katja Höschler
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Richard Pebody
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Paul J Turner
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom.,Section of Paediatrics, Imperial College London, London, United Kingdom
| | - Elizabeth Miller
- Immunisation and Countermeasures, National Infection Service, Public Health England, Colindale, United Kingdom
| | - Maria Zambon
- Virus Reference Department, National Infection Service, Public Health England, Colindale, United Kingdom
| |
Collapse
|
4
|
Hauge SH, Bakken IJ, de Blasio BF, Håberg SE. Risk conditions in children hospitalized with influenza in Norway, 2017-2019. BMC Infect Dis 2020; 20:769. [PMID: 33076855 PMCID: PMC7569759 DOI: 10.1186/s12879-020-05486-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/07/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Norwegian children are more frequently hospitalized with influenza than adults. Little is known about the characteristics of these children. Our aim was to investigate the presence of pre-existing risk conditions and to determine the duration of influenza hospitalizations in children during two influenza seasons. METHODS The Norwegian Patient Registry holds data on all hospitalized patients in Norway. We included all patients younger than 18 years hospitalized with a diagnosis of influenza during the influenza seasons 2017-18 and 2018-19. Pre-existing risk conditions for influenza were identified by ICD-10 diagnoses in the Norwegian Patient Registry. In addition, information on asthma diagnoses were also retrieved from the Norwegian Registry for Primary Health Care. To estimate the prevalence of risk conditions in the child population, we obtained diagnoses on all Norwegian children in a two-year period prior to each influenza season. We calculated age-specific rates for hospitalization and risk for being hospitalized with influenza in children with risk conditions. RESULTS In total, 1013 children were hospitalized with influenza during the two influenza seasons. Children younger than 6 months had the highest rate of hospitalization, accounting for 13.5% of all admissions (137 children). Hospitalization rates decreased with increasing age. Among children hospitalized with influenza, 25% had one or more pre-existing risk conditions for severe influenza, compared to 5% in the general population under 18 years. Having one or more risk conditions significantly increased the risk of hospitalization, (Odds Ratio (OR) 6.1, 95% confidence interval (CI) 5.0-7.4 in the 2017-18 season, and OR 6.8, 95% CI 5.4-8.4 in the 2018-19 season). Immunocompromised children and children with epilepsy had the highest risk of hospitalization with influenza, followed by children with heart disease and lung disease. The average length of stay in hospital were 4.6 days, and this did not differ with age. CONCLUSION Children with pre-existing risk conditions for influenza had a higher risk of hospitalization for influenza. However, most children (75%) admitted to hospital with influenza in Norway during 2017-2019 did not have pre-existing risk conditions. Influenza vaccination should be promoted in particular for children with risk conditions and pregnant women to protect new-borns.
Collapse
Affiliation(s)
- Siri Helene Hauge
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.
| | - Inger Johanne Bakken
- Department of Health Registries, Norwegian Directorate of Health, Trondheim, Norway
| | - Birgitte Freiesleben de Blasio
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Biostatistics, Oslo Centre for Biostatistics and Epidemiology, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Siri Eldevik Håberg
- Norwegian Institute of Public Health, Centre for Fertility and Health, Oslo, Norway
| |
Collapse
|
5
|
Divino V, Krishnarajah G, Pelton SI, Mould-Quevedo J, Anupindi VR, DeKoven M, Postma MJ. A real-world study evaluating the relative vaccine effectiveness of a cell-based quadrivalent influenza vaccine compared to egg-based quadrivalent influenza vaccine in the US during the 2017-18 influenza season. Vaccine 2020; 38:6334-6343. [PMID: 32739119 DOI: 10.1016/j.vaccine.2020.07.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/29/2020] [Accepted: 07/12/2020] [Indexed: 01/24/2023]
Abstract
BACKGROUND Cell-based influenza vaccine manufacturing reduces egg adaptations that can decrease vaccine effectiveness. We evaluated the relative vaccine effectiveness (rVE) of cell-based quadrivalent influenza vaccine (QIVc) compared to standard-dose egg-based quadrivalent influenza vaccines (QIVe-SD) against influenza-related and serious respiratory events among subjects 4-64 years of age during the 2017-18 influenza season. METHODS A retrospective cohort analysis was conducted using administrative claims data in the US (IQVIA PharMetrics Plus® database). Subjects vaccinated with QIVc or QIVe-SD from 8/2017-1/2018 were identified (date of vaccination termed the index date). Influenza-related hospitalizations/ER visits, all-cause hospitalizations and serious respiratory hospitalizations/ER visits were assessed post-vaccination. Inverse probability of treatment weighting (IPTW) and Poisson regression were used to evaluate the adjusted rVE of QIVc compared to QIVe-SD. In a subgroup analysis, rVE was assessed for several subgroups of interest (4-17, 18-64 and 50-64 years, and subjects with ≥1 high-risk condition). In a secondary economic analysis, annualized all-cause costs over the follow-up were compared using propensity score matching (PSM) and generalized estimating equation (GEE) models. RESULTS The study sample comprised 555,538 QIVc recipients and 2,528,524 QIVe-SD recipients. Prior to adjustment, QIVc subjects were older and had higher total costs in the 6-months pre-index. Following IPTW-adjustment and Poisson regression, QIVc was more effective in reducing influenza-related hospitalizations/ER visits, all-cause hospitalizations, and hospitalizations/ER visits related to asthma/COPD/bronchial events and other respiratory events compared to QIVe-SD. Similar trends were generally observed in the subgroup analysis. Following PSM adjustment and GEE regression, QIVe-SD was associated with significantly higher annualized all-cause total costs compared to QIVc, driven by higher costs for outpatient medical services and inpatient hospitalizations. CONCLUSIONS After adjustment for confounders and selection bias, QIVc reduced influenza-related hospitalizations/ER visits, all-cause hospitalizations, and serious respiratory hospitalizations/ER visits compared to QIVe-SD. QIVc was associated with significantly lower all-cause total costs.
Collapse
Affiliation(s)
| | | | - Stephen I Pelton
- Department of Epidemiology, Boston University Schools of Medicine and Public Health, Boston, MA, USA; Maxwell Finland Laboratories, Boston Medical Center, Boston, MA, USA
| | | | | | | | - Maarten J Postma
- Unit of PharmacoTherapy, Epidemiology & Economics (PTE2), Department of Pharmacy, University of Groningen, Groningen, the Netherlands; Department of Health Sciences, University of Groningen, University Medical Centre Groningen (UMCG), Groningen, the Netherlands; Department of Economics, Econometrics & Finance, University of Groningen, Faculty of Economics & Business, Groningen, the Netherlands
| |
Collapse
|
7
|
Buchan SA, Booth S, Scott AN, Simmonds KA, Svenson LW, Drews SJ, Russell ML, Crowcroft NS, Loeb M, Warshawsky BF, Kwong JC. Effectiveness of Live Attenuated vs Inactivated Influenza Vaccines in Children During the 2012-2013 Through 2015-2016 Influenza Seasons in Alberta, Canada: A Canadian Immunization Research Network (CIRN) Study. JAMA Pediatr 2018; 172:e181514. [PMID: 29971427 PMCID: PMC6143060 DOI: 10.1001/jamapediatrics.2018.1514] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IMPORTANCE Recent observational studies report conflicting results regarding the effectiveness of live attenuated influenza vaccine (LAIV), particularly against influenza A(H1N1)pdm09. OBJECTIVE To compare the effectiveness of LAIV and inactivated influenza vaccine (IIV) against laboratory-confirmed influenza. DESIGN, SETTING, AND PARTICIPANTS A test-negative study to estimate influenza vaccine effectiveness (VE) using population-based, linked, individual-level laboratory, health administrative, and immunization data. Data were obtained from 10 169 children and adolescents aged 2 to 17 years (children) who were tested for influenza in inpatient or outpatient settings during periods when influenza was circulating based on a threshold level of 5% weekly test positivity for the province during the 4 influenza seasons spanning from November 11, 2012, to April 30, 2016, in Alberta, Canada. Logistic regression was used to estimate VE by vaccine type, influenza season, and influenza type and subtype. The relative effectiveness of each vaccine type was assessed by comparing the odds of laboratory-confirmed influenza infection for LAIV recipients with that for IIV recipients. EXPOSURES The primary exposure was receipt of LAIV or IIV before testing for influenza. MAIN OUTCOMES AND MEASURES The primary outcome was influenza case status as determined by reverse-transcriptase polymerase chain reaction testing. RESULTS A total of 10 779 respiratory specimens (from 10 169 children) collected and tested for influenza during the 4 influenza seasons were included, with 53.4% from males; the mean (SD) age was 7.0 (4.6) years. Across the 4 influenza seasons, 3161 children tested positive for influenza. Combining the 4 influenza seasons, the adjusted VE against influenza A(H1N1)pdm09 was 69% (95% CI, 56%-78%) for LAIV compared with 79% (95% CI, 70%-86%) for IIV. Vaccine effectiveness against influenza A(H3N2) was 36% (95% CI, 14%-53%) for LAIV and 43% (95% CI, 22%-59%) for IIV. Against influenza B, VE was 74% (95% CI, 62%-82%) for LAIV and 56% (95% CI, 41%-66%) for IIV. There were no significant differences in the odds of influenza infection for LAIV recipients compared with IIV recipients except for influenza B during the 2015-2016 season, when LAIV recipients had lower odds of infection than IIV recipients (odds ratio, 0.36; 95% CI, 0.17-0.76). CONCLUSIONS AND RELEVANCE There was no evidence to support the lack of effectiveness of LAIV against influenza A(H1N1)pdm09. These results support administration of either vaccine type in this age group.
Collapse
Affiliation(s)
- Sarah A. Buchan
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada,Primary Care & Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada
| | - Stephanie Booth
- Analytics and Performance Reporting Branch, Alberta Ministry of Health, Edmonton, Alberta, Canada,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Allison N. Scott
- Analytics and Performance Reporting Branch, Alberta Ministry of Health, Edmonton, Alberta, Canada
| | - Kimberley A. Simmonds
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Research and Innovation Branch, Alberta Ministry of Health, Edmonton, Alberta, Canada
| | - Lawrence W. Svenson
- Analytics and Performance Reporting Branch, Alberta Ministry of Health, Edmonton, Alberta, Canada,Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada,Division of Preventive Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J. Drews
- Diagnostic Virology, Provincial Laboratory (ProvLab) for Public Health, Edmonton, Alberta, Canada,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Margaret L. Russell
- Department of Community Health Sciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Natasha S. Crowcroft
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada,Applied Immunization Research and Evaluation, Public Health Ontario, Toronto, Ontario, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Mark Loeb
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Bryna F. Warshawsky
- Communicable Diseases, Emergency Preparedness and Response, Public Health Ontario, Toronto, Ontario, Canada,Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
| | - Jeffrey C. Kwong
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada,Primary Care & Population Health Research Program, Institute for Clinical Evaluative Sciences, Toronto, Ontario, Canada,Applied Immunization Research and Evaluation, Public Health Ontario, Toronto, Ontario, Canada,Department of Family and Community Medicine, University of Toronto, Toronto, Ontario, Canada,Toronto Western Family Health Team, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|