1
|
Pöhlmann J, Weller M, Marcellusi A, Grabe-Heyne K, Krott-Coi L, Rabar S, Pollock RF. High costs, low quality of life, reduced survival, and room for improving treatment: an analysis of burden and unmet needs in glioma. Front Oncol 2024; 14:1368606. [PMID: 38571509 PMCID: PMC10987841 DOI: 10.3389/fonc.2024.1368606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Gliomas are a group of heterogeneous tumors that account for substantial morbidity, mortality, and costs to patients and healthcare systems globally. Survival varies considerably by grade, histology, biomarkers, and genetic alterations such as IDH mutations and MGMT promoter methylation, and treatment, but is poor for some grades and histologies, with many patients with glioblastoma surviving less than a year from diagnosis. The present review provides an introduction to glioma, including its classification, epidemiology, economic and humanistic burden, as well as treatment options. Another focus is on treatment recommendations for IDH-mutant astrocytoma, IDH-mutant oligodendroglioma, and glioblastoma, which were synthesized from recent guidelines. While recommendations are nuanced and reflect the complexity of the disease, maximum safe resection is typically the first step in treatment, followed by radiotherapy and/or chemotherapy using temozolomide or procarbazine, lomustine, and vincristine. Immunotherapies and targeted therapies currently have only a limited role due to disappointing clinical trial results, including in recurrent glioblastoma, for which the nitrosourea lomustine remains the de facto standard of care. The lack of treatment options is compounded by frequently suboptimal clinical practice, in which patients do not receive adequate therapy after resection, including delayed, shortened, or discontinued radiotherapy and chemotherapy courses due to treatment side effects. These unmet needs will require significant efforts to address, including a continued search for novel treatment options, increased awareness of clinical guidelines, improved toxicity management for chemotherapy, and the generation of additional and more robust clinical and health economic evidence.
Collapse
Affiliation(s)
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Andrea Marcellusi
- Economic Evaluation and HTA (EEHTA)-Centre for Economic and International Studies (CEIS), Faculty of Economics, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | - Silvia Rabar
- Covalence Research Ltd, Harpenden, United Kingdom
| | | |
Collapse
|
2
|
Kim YZ, Kim CY, Lim DH. The Overview of Practical Guidelines for Gliomas by KSNO, NCCN, and EANO. Brain Tumor Res Treat 2022; 10:83-93. [PMID: 35545827 PMCID: PMC9098981 DOI: 10.14791/btrt.2022.0001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/14/2022] [Indexed: 11/20/2022] Open
Abstract
Gliomas have been histologically diagnosed as the third most common primary tumor of the central nervous system (CNS) in a relatively small portion of Korea. Despite the rarity of gliomas, the disease entity is very dynamic due to its various molecular characteristics, compared with other CNS tumors. The practice of managing glioma patients is not globally established as a precise standard guideline because of the different socio-medical environments of individual countries. The Korean Society for Neuro-Oncology (KSNO) published guidelines for managing adult glioma in 2019, and the National Comprehensive Cancer Network and European Association of Neuro-Oncology published guidelines in September 2021 and March 2021, respectively. However, these guidelines have several different recommendations in practice, including tissue management, adjuvant treatment after surgical resection, and salvage treatment for recurrent/progressive gliomas. Currently, the KSNO guideline working group is preparing an updated version of the guideline for managing adult gliomas. In this review, common features have been verified and different points are analyzed. Consequently, this review is expected to be informative and helpful to provide high quality evidence and a strong recommendation level for the establishment of new KSNO guidelines for managing gliomas.
Collapse
Affiliation(s)
- Young Zoon Kim
- Division of Neurooncology and Department of Neurosurgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Chae-Yong Kim
- Department of Neurosurgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Do Hoon Lim
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Kong SH, Yoo J, Lee D, Moon S, Sung KS, Park SH, Shim JK, Choi RJ, Yoon SJ, Moon JH, Kim EH, Lee SJ, Chang JH, Kang SG. Influence of the Amount of Fresh Specimen on the Isolation of Tumor Mesenchymal Stem-Like Cells from High-Grade Glioma. Yonsei Med J 2021; 62:936-942. [PMID: 34558873 PMCID: PMC8470561 DOI: 10.3349/ymj.2021.62.10.936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/29/2021] [Accepted: 08/02/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE A critical indicator of the overall survival of patients with high-grade glioma is the successful isolation of tumor mesenchymal stem-like cells (tMSLCs), which play important roles in glioma progression. However, attempts to isolate tMSLCs from surgical specimens have not always been successful, and the reasons for this remain unclear. Considering that the amount of surgical high-grade glioma specimens varies, we hypothesized that larger surgical specimens would be better for tMSLC isolation. MATERIALS AND METHODS We assessed 51 fresh, high-grade glioma specimens and divided them into two groups according to the success or failure of tMSLC isolation. The success of tMSLC isolation was confirmed by plastic adherence, presenting antigens, tri-lineage differentiation, and non-tumorigenicity. Differences in characteristics between the two groups were tested using independent two sample t-tests, chi-square tests, or Kaplan-Meier survival analysis. RESULTS The mean specimen weights of the groups differed from each other (tMSLC-negative group: 469.9±341.9 mg, tMSLC positive group: 546.7±618.9 mg), but the difference was not statistically significant. The optimal cut-off value of specimen weight was 180 mg, and the area under the curve value was 0.599. CONCLUSION Our results suggested a minimum criterion for specimen collection, and found that the specimen amount was not deeply related to tMSLC detection. Collectively, our findings imply that the ability to isolate tMSLCs is determined by factors other than the specimen amount.
Collapse
Affiliation(s)
| | - Jihwan Yoo
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Dongkyu Lee
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Sohyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung Su Sung
- Department of Neurosurgery, Dong-A University College of Medicine, Busan, Korea
| | - So Hee Park
- Department of Biostatistics, Graduate School of Public Health, Yonsei University, Seoul, Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seon Jin Yoon
- Department of Biochemistry and Molecular Biology, Institute of Genetic Science, Integrated Genomic Research Center for Metabolic Regulation, Yonsei University College of Medicine, Seoul, Korea
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Su Jae Lee
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul, Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seok-Gu Kang
- Yonsei University College of Medicine, Seoul, Korea
- Department of Neurosurgery, Brain Tumor Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Yang Y, Ma Y, Lu J, Du S, Zhang J, Meng H, Chen Z, Zhang Q, Zhang X, Shi W, Girolamo F, Cepeda S, Kang J. Evaluation of the reporting quality of clinical practice guidelines on gliomas using the RIGHT checklist. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1002. [PMID: 34277802 PMCID: PMC8267264 DOI: 10.21037/atm-21-2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/03/2021] [Indexed: 11/29/2022]
Abstract
Background The reporting quality of clinical practice guidelines (CPGs) for gliomas has not yet been thoroughly assessed. The International Reporting Items for Practice Guidelines in Healthcare (RIGHT) statement developed in 2016 provides a reporting framework to improve the quality of CPGs. We aimed to estimate the reporting quality of glioma guidelines using the RIGHT checklist and investigate how the reporting quality differs by selected characteristics. Methods We systematically searched electronic databases, guideline databases, and medical society websites to retrieve CPGs on glioma published between 2018 and 2020. We calculated the compliance of the CPGs to individual items, domains and the RIGHT checklist overall. We performed stratified analyses by publication year, country of development, reporting of funding, and impact factor (IF) of the journal. Results Our search revealed 20 eligible guidelines. Mean overall adherence to the RIGHT statement was 54.6%. Eight CPGs reported more than 60% of the items, and five reported less than 50%. All guidelines adhered to the items 1a, 3, 7a, 13a, while no guidelines reported the items 17 or 18b (see http://www.right-statement.org/right-statement/checklist for a description of the items). Two of the seven domains, “Basic information” and “Background”, had mean reporting rates above 60%. The “Review and quality assurance” domain had the lowest mean reporting rate, 12.5%. The reporting quality of guidelines published in 2020, guidelines developed in the United States, and guidelines that reported funding tended to be above average. Conclusions The reporting quality of CPGs on gliomas is low and needs improvement. Particular attention should be paid on reporting the external review and quality assurance process. The use of the RIGHT criteria should be encouraged to guide the development, reporting and evaluation of CPGs.
Collapse
Affiliation(s)
- Yongjie Yang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yanfang Ma
- School of Chinese Medicine of Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Jingli Lu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shuzhang Du
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Jingmin Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Haiyang Meng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zhe Chen
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Qiwen Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Xiaojian Zhang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, University of Bari School of Medicine, Bari, Italy
| | - Santiago Cepeda
- Department of Neurosurgery, University Hospital Río Hortega, Valladolid, Spain
| | - Jian Kang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|