1
|
Bendellaa M, Cave C, Godard A, Dalonneau F, Sickinger A, Goze C, Maury O, Le Gendre P, Bodio E, Busser B, Sancey L. WazaGaY: An Innovative Aza-BODIPY-Derived Near-Infrared Fluorescent Probe for Enhanced Tumor Imaging. J Med Chem 2024; 67:16635-16648. [PMID: 39289797 DOI: 10.1021/acs.jmedchem.4c01435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Aza-BODIPYs represent a class of fluorophores in which the π-conjugated system is rigidified and stabilized by a boron atom. A promising strategy to enhance their fluorescence properties involves replacing the boron atom with a metal ion. Here, we describe the synthesis and characterization of a water-soluble derivative where the metal is a gallium(III) ion, termed WazaGaY (water-soluble aza-GaDIPY). Water solubility is ensured by two ammonium substituents, inducing a bathochromic shift and a significant increase in quantum yield compared to that of the dimethylamino analog. The cellular behavior of WazaGaY-1 was observed across different tumor cells. In vivo, the distribution and safety profiles were determined, and tumor uptake was assessed in various tumor types. Following intravenous injection, WazaGaY-1 enabled clear discrimination of tumors engrafted subcutaneously in mice with high tumor-to-muscle ratios (ranging from 7 to 20), even in the absence of specific conjugation. Its potential as a contrast agent for fluorescence-guided surgery was confirmed.
Collapse
Affiliation(s)
- Mohamed Bendellaa
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| | - Charlotte Cave
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Fabien Dalonneau
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| | | | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Olivier Maury
- CNRS, ENS de Lyon, CNRS, LCH, UMR 5182, Lyon F-69342, France
| | - Pierre Le Gendre
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne, CNRS UMR 6302, Dijon 21078, France
- Nantes Université, CNRS, CEISAM, UMR 6230, Nantes F-44000, France
- Institut Universitaire de France (IUF), Paris 75005, France
| | - Benoit Busser
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
- Institut Universitaire de France (IUF), Paris 75005, France
- Grenoble Alpes University Hospital (CHUGA), Grenoble 38043, France
| | - Lucie Sancey
- Université Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences (IAB), Grenoble 38000, France
| |
Collapse
|
2
|
Tower J. Selectively advantageous instability in biotic and pre-biotic systems and implications for evolution and aging. FRONTIERS IN AGING 2024; 5:1376060. [PMID: 38818026 PMCID: PMC11137231 DOI: 10.3389/fragi.2024.1376060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Rules of biology typically involve conservation of resources. For example, common patterns such as hexagons and logarithmic spirals require minimal materials, and scaling laws involve conservation of energy. Here a relationship with the opposite theme is discussed, which is the selectively advantageous instability (SAI) of one or more components of a replicating system, such as the cell. By increasing the complexity of the system, SAI can have benefits in addition to the generation of energy or the mobilization of building blocks. SAI involves a potential cost to the replicating system for the materials and/or energy required to create the unstable component, and in some cases, the energy required for its active degradation. SAI is well-studied in cells. Short-lived transcription and signaling factors enable a rapid response to a changing environment, and turnover is critical for replacement of damaged macromolecules. The minimal gene set for a viable cell includes proteases and a nuclease, suggesting SAI is essential for life. SAI promotes genetic diversity in several ways. Toxin/antitoxin systems promote maintenance of genes, and SAI of mitochondria facilitates uniparental transmission. By creating two distinct states, subject to different selective pressures, SAI can maintain genetic diversity. SAI of components of synthetic replicators favors replicator cycling, promoting emergence of replicators with increased complexity. Both classical and recent computer modeling of replicators reveals SAI. SAI may be involved at additional levels of biological organization. In summary, SAI promotes replicator genetic diversity and reproductive fitness, and may promote aging through loss of resources and maintenance of deleterious alleles.
Collapse
Affiliation(s)
- John Tower
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
3
|
Weber F, Axmann M, Horner A, Schwarzinger B, Weghuber J, Plochberger B. Lipoprotein Particles as Shuttles for Hydrophilic Cargo. MEMBRANES 2023; 13:membranes13050471. [PMID: 37233532 DOI: 10.3390/membranes13050471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/23/2023] [Accepted: 04/26/2023] [Indexed: 05/27/2023]
Abstract
Lipoprotein particles (LPs) are excellent transporters and have been intensively studied in cardiovascular diseases, especially regarding parameters such as their class distribution and accumulation, site-specific delivery, cellular internalization, and escape from endo/lysosomal compartments. The aim of the present work is the hydrophilic cargo loading of LPs. As an exemplary proof-of-principle showcase, the glucose metabolism-regulating hormone, insulin, was successfully incorporated into high-density lipoprotein (HDL) particles. The incorporation was studied and verified to be successful using Atomic Force Microscopy (AFM) and Fluorescence Microscopy (FM). Single-molecule-sensitive FM together with confocal imaging visualized the membrane interaction of single, insulin-loaded HDL particles and the subsequent cellular translocation of glucose transporter type 4 (Glut4).
Collapse
Affiliation(s)
- Florian Weber
- Department of Medical Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17164 Solna, Sweden
| | - Markus Axmann
- Department of Medical Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler Universität, 4040 Linz, Austria
| | - Bettina Schwarzinger
- FFoQSI-Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, 4600 Wels, Austria
| | - Julian Weghuber
- FFoQSI-Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, 4600 Wels, Austria
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Birgit Plochberger
- Department of Medical Engineering, University of Applied Sciences Upper Austria, 4020 Linz, Austria
| |
Collapse
|
4
|
Ahmed S, Pande AH, Sharma SS. Therapeutic potential of ApoE-mimetic peptides in CNS disorders: Current perspective. Exp Neurol 2022; 353:114051. [DOI: 10.1016/j.expneurol.2022.114051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 02/07/2023]
|
5
|
Metherel AH, Rezaei K, Lacombe RJS, Bazinet RP. Plasma unesterified eicosapentaenoic acid is converted to docosahexaenoic acid (DHA) in the liver and supplies the brain with DHA in the presence or absence of dietary DHA. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158942. [PMID: 33845223 DOI: 10.1016/j.bbalip.2021.158942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/22/2021] [Accepted: 04/03/2021] [Indexed: 01/06/2023]
Abstract
Recent meta-analyses suggest that high eicosapentaenoic acid (EPA, 20:5n-3) supplements may be beneficial in managing the symptoms of major depression. However, brain EPA levels are hundreds-fold lower than docosahexaenoic acid (DHA, 22:6n-3), making the potential mechanisms of action of EPA in the brain less clear. Using a kinetic model the goal of this study was to determine how EPA impacts brain DHA levels. Following 8 weeks feeding of a 2% alpha-linolenic acid (ALA, 18:3n-3) or DHA diet (2% ALA + 2% DHA), 11-week-old Long Evans rats were infused with unesterified 13C-EPA at steady-state for 3 h with plasma collected at 30 min intervals and livers and brains collected after 3 h for determining DHA synthesis-accretion kinetics in multiple lipid fractions. Most of the newly synthesized liver 13C-DHA was in phosphatidylethanolamine (PE, 37%-56%), however, 75-80% of plasma 13C-DHA was found in triacylglycerols (TAG) at 14 ± 5 and 46 ± 12 nmol/g/day (p < 0.05) in the ALA and DHA group, respectively. In the brain, PE and phosphatidylserine (PS) accreted the most 13C-DHA, and DHA compared to ALA feeding shortened DHA half-lives in most lipid fractions, resulting in total brain DHA half-lives of 32 ± 6 and 96 ± 24 (days/g ± SEM), respectively (p < 0.05). EPA was predominantly converted and stored as PE-DHA in the liver, secreted to plasma as TAG-DHA and accumulated in brain as PE and PS-DHA. In conclusion, EPA is a substantial source for brain DHA turnover and suggests an important role for EPA in maintaining brain DHA levels.
Collapse
Affiliation(s)
- Adam H Metherel
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada.
| | - Kimia Rezaei
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - R J Scott Lacombe
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| | - Richard P Bazinet
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
6
|
Tang L, Li J, Zhao Q, Pan T, Zhong H, Wang W. Advanced and Innovative Nano-Systems for Anticancer Targeted Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13081151. [PMID: 34452113 PMCID: PMC8398618 DOI: 10.3390/pharmaceutics13081151] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022] Open
Abstract
The encapsulation of therapeutic agents into nano-based drug delivery system for cancer treatment has received considerable attention in recent years. Advancements in nanotechnology provide an opportunity for efficient delivery of anticancer drugs. The unique properties of nanoparticles not only allow cancer-specific drug delivery by inherent passive targeting phenomena and adopting active targeting strategies, but also improve the pharmacokinetics and bioavailability of the loaded drugs, leading to enhanced therapeutic efficacy and safety compared to conventional treatment modalities. Small molecule drugs are the most widely used anticancer agents at present, while biological macromolecules, such as therapeutic antibodies, peptides and genes, have gained increasing attention. Therefore, this review focuses on the recent achievements of novel nano-encapsulation in targeted drug delivery. A comprehensive introduction of intelligent delivery strategies based on various nanocarriers to encapsulate small molecule chemotherapeutic drugs and biological macromolecule drugs in cancer treatment will also be highlighted.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Qingqing Zhao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Ting Pan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| | - Hui Zhong
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Correspondence: (H.Z.); (W.W.)
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; (L.T.); (J.L.); (Q.Z.); (T.P.)
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
- Correspondence: (H.Z.); (W.W.)
| |
Collapse
|
7
|
Nanotechnology applications for cardiovascular disease treatment: Current and future perspectives. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 34:102387. [PMID: 33753283 DOI: 10.1016/j.nano.2021.102387] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/24/2021] [Accepted: 03/03/2021] [Indexed: 11/22/2022]
Abstract
A large majority of cardiovascular nanomedicine research has focused on fabricating designer nanoparticles for improved targeting as a means to overcome biological barriers. For cardiac related disorders, such as atherosclerosis, hypertension, and myocardial infarction, designer micro or nanoparticles are often administered into the vasculature or targeted vessel with the hope to circumvent problems associated with conventional drug delivery, including negative systemic side effects. Additionally, novel nano-drug carriers that enter circulation can be selectively uptaken by immune cells with the intended purpose that they modulate inflammatory processes and migrate locally to plaque for therapeutic payload delivery. Indeed, innovative design in nanoparticle composition, formulation, and functionalization has advanced the field as a means to achieve therapeutic efficacy for a variety of cardiac disease indications. This perspective aims to discuss these advances and provide new interpretations of how nanotechnology can be best applied to aid in cardiovascular disease treatment. In an effort to spark discussions on where the field of research should go, we share our outlook in new areas of nanotechnological inclusion and integration, such as in vascular, implantable, or wearable device technologies as well as nanocomposites and nanocoatings. Further, as cardiovascular diseases (CVD) increasingly claim a number of lives globally, we propose more attention should be placed by researchers on nanotechnological approaches for risk factor treatment to aid in early prevention and treatment of CVD.
Collapse
|
8
|
Wolska A, Reimund M, Sviridov DO, Amar MJ, Remaley AT. Apolipoprotein Mimetic Peptides: Potential New Therapies for Cardiovascular Diseases. Cells 2021; 10:597. [PMID: 33800446 PMCID: PMC8000854 DOI: 10.3390/cells10030597] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/13/2022] Open
Abstract
Since the seminal breakthrough of treating diabetic patients with insulin in the 1920s, there has been great interest in developing other proteins and their peptide mimetics as therapies for a wide variety of other medical disorders. Currently, there are at least 60 different peptides that have been approved for human use and over 150 peptides that are in various stages of clinical development. Peptides mimetic of the major proteins on lipoproteins, namely apolipoproteins, have also been developed first as tools for understanding apolipoprotein structure and more recently as potential therapeutics. In this review, we discuss the biochemistry, peptide mimetics design and clinical trials for peptides based on apoA-I, apoE and apoC-II. We primarily focus on applications of peptide mimetics related to cardiovascular diseases. We conclude with a discussion on the limitations of peptides as therapeutic agents and the challenges that need to be overcome before apolipoprotein mimetic peptides can be developed into new drugs.
Collapse
Affiliation(s)
- Anna Wolska
- Lipoprotein Metabolism Laboratory, Translational Vascular Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA; (M.R.); (D.O.S.); (M.J.A.); (A.T.R.)
| | | | | | | | | |
Collapse
|
9
|
Gupta A, Sharma R, Kuche K, Jain S. Exploring the therapeutic potential of the bioinspired reconstituted high density lipoprotein nanostructures. Int J Pharm 2021; 596:120272. [DOI: 10.1016/j.ijpharm.2021.120272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/20/2020] [Accepted: 12/26/2020] [Indexed: 12/17/2022]
|
10
|
Pedersbæk D, Kræmer MK, Kempen PJ, Ashley J, Braesch-Andersen S, Andresen TL, Simonsen JB. The Composition of Reconstituted High-Density Lipoproteins (rHDL) Dictates the Degree of rHDL Cargo- and Size-Remodeling via Direct Interactions with Endogenous Lipoproteins. Bioconjug Chem 2019; 30:2634-2646. [PMID: 31487985 DOI: 10.1021/acs.bioconjchem.9b00552] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The application of reconstituted high-density lipoproteins (rHDL) as a drug-carrier has during the past decade been established as a promising approach for effective receptor-mediated drug delivery, and its ability to target tumors has recently been confirmed in a clinical trial. The rHDL mimics the endogenous HDL, which is known to be highly dynamic and undergo extensive enzyme-mediated remodulations. Hence, to reveal the physiological rHDL stability, a thorough characterization of the dynamics of rHDL in biologically relevant environments is needed. We employ a size-exclusion chromatography (SEC) method to evaluate the dynamics of discoidal rHDL in fetal bovine serum (FBS), where we track both the rHDL lipids (by the fluorescence from lipid-conjugated fluorophores) and apoA-I (by human apoA-I ELISA). We show by using lipoprotein depleted FBS and isolated lipoproteins that rHDL lipids can be transferred to endogenous lipoproteins via direct interactions in a nonenzymatic process, resulting in rHDL compositional- and size-remodeling. This type of dynamics could lead to misinterpretations of fluorescence-based rHDL uptake studies due to desorption of labile lipophilic fluorophores or off-target side effects due to desorption of incorporated drugs. Importantly, we show how the degree of rHDL remodeling can be controlled by the compositional design of the rHDL. Understanding the correlation between the molecular properties of the rHDL constituents and their collective dynamics is essential for improving the rHDL-based drug delivery platform. Taken together, our work highlights the need to carefully consider the compositional design of rHDL and test its stability in a biological relevant environment, when developing rHDL for drug delivery purposes.
Collapse
Affiliation(s)
- Dennis Pedersbæk
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | - Martin Kisha Kræmer
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | - Paul Joseph Kempen
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | - Jon Ashley
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | | | - Thomas L Andresen
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| | - Jens B Simonsen
- Technical University of Denmark , Department of Health Technology , 2800 Kongens Lyngby , Denmark
| |
Collapse
|
11
|
Kornmueller K, Vidakovic I, Prassl R. Artificial High Density Lipoprotein Nanoparticles in Cardiovascular Research. Molecules 2019; 24:E2829. [PMID: 31382521 PMCID: PMC6695986 DOI: 10.3390/molecules24152829] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 02/07/2023] Open
Abstract
Lipoproteins are endogenous nanoparticles which are the major transporter of fats and cholesterol in the human body. They play a key role in the regulatory mechanisms of cardiovascular events. Lipoproteins can be modified and manipulated to act as drug delivery systems or nanocarriers for contrast agents. In particular, high density lipoproteins (HDL), which are the smallest class of lipoproteins, can be synthetically engineered either as nascent HDL nanodiscs or spherical HDL nanoparticles. Reconstituted HDL (rHDL) particles are formed by self-assembly of various lipids and apolipoprotein AI (apo-AI). A variety of substances including drugs, nucleic acids, signal emitting molecules, or dyes can be loaded, making them efficient nanocarriers for therapeutic applications or medical diagnostics. This review provides an overview about synthesis techniques, physicochemical properties of rHDL nanoparticles, and structural determinants for rHDL function. We discuss recent developments utilizing either apo-AI or apo-AI mimetic peptides for the design of pharmaceutical rHDL formulations. Advantages, limitations, challenges, and prospects for clinical translation are evaluated with a special focus on promising strategies for the treatment and diagnosis of atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Karin Kornmueller
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ivan Vidakovic
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria
| | - Ruth Prassl
- Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Biophysics, Medical University of Graz, Neue Stiftingtalstraße 6/IV, 8010 Graz, Austria.
| |
Collapse
|
12
|
Raut S, Mooberry L, Sabnis N, Garud A, Dossou AS, Lacko A. Reconstituted HDL: Drug Delivery Platform for Overcoming Biological Barriers to Cancer Therapy. Front Pharmacol 2018; 9:1154. [PMID: 30374303 PMCID: PMC6196266 DOI: 10.3389/fphar.2018.01154] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/24/2018] [Indexed: 12/12/2022] Open
Abstract
Drug delivery to malignant tumors is limited by several factors, including off-target toxicities and suboptimal benefits to cancer patient. Major research efforts have been directed toward developing novel technologies involving nanoparticles (NPs) to overcome these challenges. Major obstacles, however, including, opsonization, transport across cancer cell membranes, multidrug-resistant proteins, and endosomal sequestration of the therapeutic agent continue to limit the efficiency of cancer chemotherapy. Lipoprotein-based drug delivery technology, "nature's drug delivery system," while exhibits highly desirable characteristics, it still needs substantial investment from private/government stakeholders to promote its eventual advance to the bedside. Consequently, this review focuses specifically on the synthetic (reconstituted) high-density lipoprotein rHDL NPs, evaluating their potential to overcome specific biological barriers and the challenges of translation toward clinical utilization and commercialization. This highly robust drug transport system provides site-specific, tumor-selective delivery of anti-cancer agents while reducing harmful off-target effects. Utilizing rHDL NPs for anti-cancer therapeutics and tumor imaging revolutionizes the future strategy for the management of a broad range of cancers and other diseases.
Collapse
Affiliation(s)
- Sangram Raut
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Linda Mooberry
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Ashwini Garud
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Andras Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, United States
| |
Collapse
|
13
|
Zhou YE, Buchowski MS, Akatue RA, Wu J, Liu J, Hargreaves MK. Physical Activity Levels and Cardiometabolic Risks in Obese African American Adults: A Pilot Intervention Study. J Health Care Poor Underserved 2018; 29:1027-1045. [PMID: 30122681 DOI: 10.1353/hpu.2018.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Limited information is available regarding the effects of physical activity on risks of cardiometabolic diseases among obese African American adults. We conducted a church-based 12-week weight control and cardiometabolic risk reduction intervention (n=30, 22 females, 56.7±11.4 years old, BMI 37.4±6.7 kg/m2), after which body weight was slightly reduced (98.3±18.4 and 97.3±19 kg, p=.052); body fat percentage was significantly decreased among males (34.7±8.9 to 28.5±8.4 %; p=.049); and walking steps were increased, but not significantly. Among measured cardiometabolic risk biomarkers, hemoglobin A1c (HbA1c) was decreased significantly (6.8±1.1 to 6.1±1.1%; p=.0004) while time spent in sedentary behaviors was associated with less favorable change in total cholesterol (β=11.49, SE=3.55, p=.003) and tumor necrosis factor (TNF-α, β=0.3, SE=0.13, p=.038). Our study shows that adiposity reduction was feasible through a short-term healthy lifestyle program for obese African American adults, and suggests that reducing sedentary behaviors through light physical activity might lead to a decrease in cardiovascular risks.
Collapse
|
14
|
Su M, Wang D, Chang W, Liu L, Cui M, Xu T. Preparation of Vitamin E-Containing High-Density Lipoprotein and Its Protective Efficacy on Macrophages. Assay Drug Dev Technol 2018; 16:107-114. [PMID: 29469589 DOI: 10.1089/adt.2017.831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Manman Su
- Department of Obstetrics and Gynecology, The Second Clinical Hospital, Jilin University, Changchun, Republic of China
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Republic of China
| | - Dingding Wang
- Department of Biotechnology, College of Life Science and Biopharmacology, Guangdong Pharmaceutical University, Guangzhou, Republic of China
| | - Weiqin Chang
- Department of Obstetrics and Gynecology, The Second Clinical Hospital, Jilin University, Changchun, Republic of China
| | - Lixian Liu
- Department of Regenerative Medicine, College of Pharmacy, Jilin University, Changchun, Republic of China
| | - Manhua Cui
- Department of Obstetrics and Gynecology, The Second Clinical Hospital, Jilin University, Changchun, Republic of China
| | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Clinical Hospital, Jilin University, Changchun, Republic of China
| |
Collapse
|