Sundararajan SH, Doustaly R, Avignon G, Madoff DC, Winokur RS. Intraprocedural guidance for recanalization of post-thrombotic venous lesions using live overlay of center lines from pre-operative cross-sectional imaging: a preliminary experience.
CVIR Endovasc 2020;
3:32. [PMID:
32567037 PMCID:
PMC7306479 DOI:
10.1186/s42155-020-00121-6]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/04/2020] [Indexed: 11/26/2022] Open
Abstract
Purpose
Pre-procedural contrast-enhanced CT and MRI imaging is typically acquired prior to deep venous recanalization procedures for post-thrombotic syndrome. This technical note reports the utility of live-overlay of augmented centerlines extracted from pre-procedural CT and MRI imaging in facilitating fluoroscopic-guided recanalization of post-thrombotic venous lesions.
Methods and materials
Six patients with pre-procedural CT or MR venography data were incorporated into a commercially available 3D overlay software (Vessel Assist, GE Healthcare, Buc, France) during venous disease interventions for post-thrombotic venous lesions. Procedures were performed on the GE Discovery IGS 740 fluoroscopy system. After manual determination of the vasculature from preprocedural CT or MR, centerlines were created representing the location and trajectory of the vessels. Steps showcasing the creation of centerlines and their representation during overlay with real-time fluoroscopic guidance in these cases are outlined. Time required to cross the post-thrombotic and occlusive venous segments were reviewed.
Results
All iliocaval recanalization procedures were successfully performed utilizing vessel centerline 3D overlay. In one case where occlusion extended to the femoral vein, mis-registration was identified over the femoral anatomy due to a complex leg rotation compared to pre-procedural imaging. No procedural complications related to utilization of software were noted. Average crossing time for occlusions was 3.4 min (range 1.6–5.2).
Conclusion
3D overlay with vessel tracking from pre-procedural CT and MRI imaging is technically feasible and assists in catheter navigation for post-thrombotic venous segments. While results from these preliminary experiences support the continued use of this technology, further prospective and comparative evaluation of this technique is warranted to assess for added value in technical success, reductions in procedure time or reductions in radiation exposure.
Collapse