1
|
Oosterloo M, Touze A, Byrne LM, Achenbach J, Aksoy H, Coleman A, Lammert D, Nance M, Nopoulos P, Reilmann R, Saft C, Santini H, Squitieri F, Tabrizi S, Burgunder JM, Quarrell O. Clinical Review of Juvenile Huntington's Disease. J Huntingtons Dis 2024; 13:149-161. [PMID: 38669553 PMCID: PMC11307030 DOI: 10.3233/jhd-231523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
Juvenile Huntington's disease (JHD) is rare. In the first decade of life speech difficulties, rigidity, and dystonia are common clinical motor symptoms, whereas onset in the second decade motor symptoms may sometimes resemble adult-onset Huntington's disease (AOHD). Cognitive decline is mostly detected by declining school performances. Behavioral symptoms in general do not differ from AOHD but may be confused with autism spectrum disorder or attention deficit hyperactivity disorder and lead to misdiagnosis and/or diagnostic delay. JHD specific features are epilepsy, ataxia, spasticity, pain, itching, and possibly liver steatosis. Disease progression of JHD is faster compared to AOHD and the disease duration is shorter, particularly in case of higher CAG repeat lengths. The diagnosis is based on clinical judgement in combination with a positive family history and/or DNA analysis after careful consideration. Repeat length in JHD is usually > 55 and caused by anticipation, usually via paternal transmission. There are no pharmacological and multidisciplinary guidelines for JHD treatment. Future perspectives for earlier diagnosis are better diagnostic markers such as qualitative MRI and neurofilament light in serum.
Collapse
Affiliation(s)
- Mayke Oosterloo
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Alexiane Touze
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lauren M. Byrne
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jannis Achenbach
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | - Hande Aksoy
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - Annabelle Coleman
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dawn Lammert
- Department of Neurology, Division of Child Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martha Nance
- Struthers Parkinson’s Center, Minneapolis, MN, USA
| | - Peggy Nopoulos
- Departments of Psychiatry, Pediatrics, & Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Ralf Reilmann
- George-Huntington-Institute & Department of Radiology, University of Muenster, Muenster, Germany
- Department for Neurodegeneration, Hertie Institute for Clinical, Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Carsten Saft
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
| | | | - Ferdinando Squitieri
- Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
| | - Sarah Tabrizi
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jean-Marc Burgunder
- Neurozentrum Siloah and Department of Neurology, Swiss HD Center, University of Bern, Bern, Switzerland
| | - Oliver Quarrell
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, UK
- Department of Neurosciences University of Sheffield, Sheffield, UK
| | - on behalf of the Pediatric Huntington Disease Working Group of the European Huntington Disease Network
- Department of Neurology, Maastricht University Medical Center, Maastricht, The Netherlands
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Neurodegenerative Disease, UCL Huntington’s Disease Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- Department of Neurology, Huntington Centre NRW, Ruhr-University Bochum, St. Josef-Hospital, Bochum, Germany
- Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
- Department of Neurology, Division of Child Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Struthers Parkinson’s Center, Minneapolis, MN, USA
- Departments of Psychiatry, Pediatrics, & Neurology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
- George-Huntington-Institute & Department of Radiology, University of Muenster, Muenster, Germany
- Department for Neurodegeneration, Hertie Institute for Clinical, Brain Research, University of Tuebingen, Tuebingen, Germany
- Huntington’s Disease Association, England and Wales
- Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Rome, Italy
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo Della Sofferenza Research Hospital, San Giovanni Rotondo, Italy
- Neurozentrum Siloah and Department of Neurology, Swiss HD Center, University of Bern, Bern, Switzerland
- Department of Clinical Genetics, Sheffield Children’s Hospital, Sheffield, UK
- Department of Neurosciences University of Sheffield, Sheffield, UK
| |
Collapse
|
2
|
Khair Md AM, Kabrt DO J, Falchek Md S. Drug-Resistant Epilepsy in Children with Juvenile Huntington's Disease: A Challenging Case and Brief Review. Qatar Med J 2020; 2020:18. [PMID: 32699773 PMCID: PMC7359632 DOI: 10.5339/qmj.2020.18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/27/2020] [Indexed: 11/21/2022] Open
Abstract
Huntington's Disease (HD) is an autosomal dominant neurodegenerative disorder with a progressive decline in cognitive, motor, and psychological function. Chorea tends to be the most common associated movement disorder, although other variants of several abnormal movements are also seen. Adult-onset HD is the most common subtype. Juvenile Huntington's disease (JHD) accounts for 5%–10% of all HD cases and presents as a rapidly progressive disorder with a multitude of characteristics. We report on a 9-year-old male with JHD who presented with refractory epilepsy. His EEG findings, seizure type, and antiepileptic drug usage are discussed with a brief review of the currently available relevant literature. The currently reported case sheds light on antiepileptic drugs that proved effective in our patient and the importance of screening for JHD when a child presents with seizures that are difficult to control.
Collapse
Affiliation(s)
- Abdulhafeez M Khair Md
- Pediatric Neurology Fellow. Ai.I. Dupont Hospital for Children - Thomas Jefferson University. 1600 Rockland Rd, Wilington DE 19809, United States
| | - Jessica Kabrt DO
- Osteopathic medical student, Rowan University. 42 e Laurel Rd, Stratford NJ 08084, United States
| | - Stephen Falchek Md
- Division chief of neurology- A.I Dupont Hospital for Children Wilmington DE. Assistant professor-Thomas Jefferson University-Philadelphia PA, United States
| |
Collapse
|
3
|
Morozova KN, Suldina LA, Malankhanova TB, Grigor’eva EV, Zakian SM, Kiseleva E, Malakhova AA. Introducing an expanded CAG tract into the huntingtin gene causes a wide spectrum of ultrastructural defects in cultured human cells. PLoS One 2018; 13:e0204735. [PMID: 30332437 PMCID: PMC6192588 DOI: 10.1371/journal.pone.0204735] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
Modeling of neurodegenerative diseases in vitro holds great promise for biomedical research. Human cell lines harboring a mutations in disease-causing genes are thought to recapitulate early stages of the development an inherited disease. Modern genome-editing tools allow researchers to create isogenic cell clones with an identical genetic background providing an adequate "healthy" control for biomedical and pharmacological experiments. Here, we generated isogenic mutant cell clones with 150 CAG repeats in the first exon of the huntingtin (HTT) gene using the CRISPR/Cas9 system and performed ultrastructural and morphometric analyses of the internal organization of the mutant cells. Electron microscopy showed that deletion of three CAG triplets or an HTT gene knockout had no significant influence on the cell structure. The insertion of 150 CAG repeats led to substantial changes in quantitative and morphological parameters of mitochondria and increased the association of mitochondria with the smooth and rough endoplasmic reticulum while causing accumulation of small autolysosomes in the cytoplasm. Our data indicate for the first time that expansion of the CAG repeat tract in HTT introduced via the CRISPR/Cas9 technology into a human cell line initiates numerous ultrastructural defects that are typical for Huntington's disease.
Collapse
Affiliation(s)
- Ksenia N. Morozova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Lyubov A. Suldina
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Tuyana B. Malankhanova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- E.Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena V. Grigor’eva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- E.Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Suren M. Zakian
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- E.Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena Kiseleva
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Anastasia A. Malakhova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
- E.Meshalkin National Medical Research Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
4
|
Latimer CS, Flanagan ME, Cimino PJ, Jayadev S, Davis M, Hoffer ZS, Montine TJ, Gonzalez-Cuyar LF, Bird TD, Keene CD. Neuropathological Comparison of Adult Onset and Juvenile Huntington's Disease with Cerebellar Atrophy: A Report of a Father and Son. J Huntingtons Dis 2018; 6:337-348. [PMID: 29036832 DOI: 10.3233/jhd-170261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant neurodegenerative disease caused by a trinucleotide (CAG) repeat expansion in huntingtin (HTT) on chromosome 4. Anticipation can cause longer repeat expansions in children of HD patients. Juvenile Huntington's disease (JHD), defined as HD arising before age 20, accounts for 5-10% of HD cases, with cases arising in the first decade accounting for approximately 1%. Clinically, JHD differs from the predominately choreiform adult onset Huntington's disease (AOHD) with variable presentations, including symptoms such as myoclonus, seizures, Parkinsonism, and cognitive decline. OBJECTIVE The neuropathologic changes of AOHD are well characterized, but there are fewer reports that describe the neuropathology of JHD. Here we report a case of a six-year-old boy with paternally-inherited JHD caused by 169 CAG trinucleotide repeats who presented at age four with developmental delay, dysarthria, and seizures before dying at age 6. The boy's clinical presentation and neuropathological findings are directly compared to those of his father, who presented with AOHD and 54 repeats. METHODS A full autopsy was performed for the JHD case and a brain-only autopsy was performed for the AOHD case. Histochemically- and immunohistochemically-stained slides were prepared from formalin-fixed, paraffin-embedded tissue sections. RESULTS Both cases had neuropathology corresponding to Vonsattel grade 3. The boy also had cerebellar atrophy with huntingtin-positive inclusions in the cerebellum, findings not present in the father. CONCLUSIONS Autopsies of father and son provide a unique opportunity to compare and contrast the neuropathologic findings of juvenile and adult onset HD while also providing the first immunohistochemical evidence of cerebellar involvement in JHD. Additionally this is the first known report to include findings from peripheral tissue in a case of JHD.
Collapse
Affiliation(s)
- Caitlin S Latimer
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Margaret E Flanagan
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Patrick J Cimino
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.,HDSA Center of Excellence at the University of Washington Medical Center, Seattle, WA, USA
| | - Marie Davis
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.,GRECC, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Zachary S Hoffer
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas J Montine
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Luis F Gonzalez-Cuyar
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| | - Thomas D Bird
- Department of Neurology, University of Washington School of Medicine, Seattle, WA, USA.,HDSA Center of Excellence at the University of Washington Medical Center, Seattle, WA, USA.,GRECC, VA Puget Sound Health Care System, Seattle, WA, USA
| | - C Dirk Keene
- Department of Pathology, Division of Neuropathology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
5
|
Cui SS, Ren RJ, Wang Y, Wang G, Chen SD. Tics as an initial manifestation of juvenile Huntington's disease: case report and literature review. BMC Neurol 2017; 17:152. [PMID: 28789621 PMCID: PMC5549341 DOI: 10.1186/s12883-017-0923-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 07/14/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Huntington's disease (HD) is an autosomal dominant disorder, typically characterized by chorea due to a trinucleotide repeat expansion in the HTT gene, although the clinical manifestations of patients with juvenile HD (JHD) are atypical. CASE PRESENTATION A 17-year-old boy with initial presentation of tics attended our clinic and his DNA analysis demonstrated mutation in the HTT gene (49 CAG repeats). After treatment, his symptoms improved. Furthermore, we performed literature review through searching the databases and summarized clinical features in 33 JHD patients. CONCLUSION The most prevalent symptoms are ataxia, and two cases reported that tics as initial and prominent manifestation in JHD. Among them, 88% patients carried CAG repeats beyond 60 and most of them have family history. This case here illustrates the variable range of clinical symptoms of JHD and the necessity of testing for the HD mutation in young patients with tics with symptoms unable to be explained by Tourette's syndrome (TS).
Collapse
Affiliation(s)
- Shi-Shuang Cui
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ru-Jing Ren
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Gang Wang
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Sheng-Di Chen
- Department of Neurology & Neuroscience Institute, Ruijin Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|