1
|
Gu X, Yang B. Methods for Assessment of the Glomerular Filtration Rate in Laboratory Animals. KIDNEY DISEASES (BASEL, SWITZERLAND) 2022; 8:381-391. [PMID: 36466070 PMCID: PMC9710478 DOI: 10.1159/000525049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/11/2022] [Indexed: 06/10/2023]
Abstract
Background The glomerular filtration rate (GFR), as the benchmark of renal function, has been widely used in clinical practice and basic medical research. Currently, most researchers still rely on endogenous markers, such as plasma creatinine, blood urea nitrogen, and cystatin C, to evaluate renal function in laboratory animals. While inexpensive and simple to use, methods based on endogenous markers are often inaccurate and susceptible to several internal physiological factors. Thus, it is necessary to establish a method to precisely assess the GFR, especially when detecting early changes in GFR during acute kidney injury, and hyperfiltration usually caused by pregnancy or diabetic nephropathy. In addition, laboratory animals have higher tolerance for invasive procedures than humans, allowing novel technologies to be applied on them for GFR monitoring. In recent years, significant progress has been made in developing new methods to assess GFR in animals. However, no publication has reviewed these techniques. Summary This article summarized the majority of methods used to assess the GFR in animals in recent decades and discussed their working principles, workflows, advantages, and limitations, providing a wealth of reference and information for researchers interested in studying the kidney function in animals and developing techniques to monitor the GFR.
Collapse
Affiliation(s)
| | - Baoxue Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
2
|
Barsha G, Walton SL, Kwok E, Mirabito Colafella KM, Pinar AA, Hilliard Krause LM, Gaspari TA, Widdop RE, Samuel CS, Denton KM. Relaxin Attenuates Organ Fibrosis via an Angiotensin Type 2 Receptor Mechanism in Aged Hypertensive Female Rats. KIDNEY360 2021; 2:1781-1792. [PMID: 35373008 PMCID: PMC8785838 DOI: 10.34067/kid.0002722021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/07/2021] [Indexed: 02/04/2023]
Abstract
Background The antifibrotic effects of recombinant human relaxin (RLX) in the kidney are dependent on an interaction between its cognate receptor (RXFP1) and the angiotensin type 2 receptor (AT2R) in male models of disease. Whether RLX has therapeutic effects, which are also mediated via AT2R, in hypertensive adult and aged/reproductively senescent females is unknown. Thus, we determined whether treatment with RLX provides cardiorenal protection via an AT2R-dependent mechanism in adult and aged female stroke-prone spontaneously hypertensive rats (SHRSPs). Methods In 6-month-old (6MO) and 15-month-old ([15MO]; reproductively senescent) female SHRSP, systolic BP (SBP), GFR, and proteinuria were measured before and after 4 weeks of treatment with vehicle (Veh), RLX (0.5 mg/kg per day s.c.), or RLX+PD123319 (AT2R antagonist; 3 mg/kg per day s.c.). Aortic endothelium-dependent relaxation and fibrosis of the kidney, heart, and aorta were assessed. Results In 6MO SHRSP, RLX significantly enhanced GFR by approximately 25% (P=0.001) and reduced cardiac fibrosis (P=0.01) as compared with vehicle-treated counterparts. These effects were abolished or blunted by PD123319 coadministration. In 15MO females, RLX reduced interstitial renal (P=0.02) and aortic (P=0.003) fibrosis and lowered SBP (13±3 mm Hg; P=0.04) relative to controls. These effects were also blocked by PD123319 cotreatment (all P=0.05 versus RLX treatment alone). RLX also markedly improved vascular function by approximately 40% (P<0.001) in 15MO SHRSP, but this was not modulated by PD123319 cotreatment. Conclusions The antifibrotic and organ-protective effects of RLX, when administered to a severe model of hypertension, conferred cardiorenal protection in adult and reproductively senescent female rats to a great extent via an AT2R-mediated mechanism.
Collapse
Affiliation(s)
- Giannie Barsha
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Sarah L. Walton
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Edmund Kwok
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Katrina M. Mirabito Colafella
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Anita A. Pinar
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Lucinda M. Hilliard Krause
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| | - Tracey A. Gaspari
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Robert E. Widdop
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Chrishan S. Samuel
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Pharmacology, Monash University, Melbourne, Victoria, Australia
| | - Kate M. Denton
- Cardiovascular Program, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia,Department of Physiology, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Ullah MM, Ow CPC, Evans RG, Hilliard Krause LM. Impact of choice of kinetic model for the determination of transcutaneous FITC-sinistrin clearance in rats with streptozotocin-induced type 1 diabetes. Clin Exp Pharmacol Physiol 2020; 47:1158-1168. [PMID: 32160333 DOI: 10.1111/1440-1681.13301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 03/08/2020] [Indexed: 11/28/2022]
Abstract
Transcutaneous assessment of fluorescein isothiocyanate (FITC)-sinistrin clearance using an optical device was recently validated for determination of glomerular filtration rate (GFR) in conscious animals. In the current study, we compared four available kinetic models for calculating FITC-sinistrin clearance, to provide further insight into whether the choice of model might influence findings generated using this device. Specifically, we calculated the excretion half-life of FITC-sinistrin (minutes), rate constant (minute-1 ) and GFR indexed to bodyweight in control rats and rats with streptozotocin-induced diabetes across a 4-week experimental period using standard one-compartment (1-COM), two-compartment (2-COM) and three-compartment (3-COM) kinetic models (1-COM), and a three-compartment kinetic model with baseline correction (3-COMB). Glomerular hyperfiltration was detected in STZ-induced diabetic rats with the 2-COM or 3-COMB at day 14 and with the 3-COM at day 3 and 14 after induction of diabetes, but not at any time point using the 1-COM. From a theoretical perspective, we reasoned that the 3-COMB model provides a better estimate of t1/2 than the other models. Linear regression analysis of data generated using the 3-COMB showed a significant relationship between blood glucose and calculated GFR at the day 14 (P = .004) and day 28 (P = .01) time points, and a strong tendency for a relationship at the day 3 time point (P = .06). We conclude that hyperfiltration is an early and sustained characteristic of STZ-induced diabetes in rats. Furthermore, we propose that the 3-COMB model provides the most valid t1/2 for estimation of GFR via transcutaneous detection of FITC-sinistrin clearance.
Collapse
Affiliation(s)
- Md Mahbub Ullah
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Connie P C Ow
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Roger G Evans
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| | - Lucinda M Hilliard Krause
- Cardiovascular Disease Program, Department of Physiology, Biomedicine Discovery Institute, Monash University, Melbourne, Vic., Australia
| |
Collapse
|