1
|
Wright DC, Cheng AJ, MacPherson REK. Celebrating a decade of exercise physiology and metabolism research in physiological reports. Physiol Rep 2024; 12:e15960. [PMID: 38396315 PMCID: PMC10890928 DOI: 10.14814/phy2.15960] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/15/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
During its first decade of life, Physiological Reports has become a home for well-conceived and rigorously performed exercise physiology and metabolism studies. The breadth of research within this area is impressive, covering exercise-induced increases in skeletal muscle gene expression to the effects of exercise on the gut microbiome. The purpose of the current review is to highlight some of the impactful exercise physiology and metabolism papers published in the journal and to look ahead to what areas exercise physiology publications might address in the next 10 years.
Collapse
Affiliation(s)
- David C. Wright
- School of KinesiologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- Faculty of Land and Food SystemsUniversity of British ColumbiaVancouverBritish ColumbiaCanada
- BC Children's Hospital Research InstituteVancouverBritish ColumbiaCanada
| | - Arthur J. Cheng
- School of Kinesiology and Health ScienceYork UniversityTorontoOntarioCanada
| | - Rebecca E. K. MacPherson
- Department of Health SciencesBrock UniversitySt. CatharinesOntarioCanada
- Centre for NeuroscienceSt. CatharinesOntarioCanada
| |
Collapse
|
2
|
Lew SY, Mohd Hisam NS, Phang MWL, Syed Abdul Rahman SN, Poh RYY, Lim SH, Kamaruzzaman MA, Chau SC, Tsui KC, Lim LW, Wong KH. Adenosine Improves Mitochondrial Function and Biogenesis in Friedreich's Ataxia Fibroblasts Following L-Buthionine Sulfoximine-Induced Oxidative Stress. BIOLOGY 2023; 12:biology12040559. [PMID: 37106759 PMCID: PMC10136261 DOI: 10.3390/biology12040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023]
Abstract
Adenosine is a nucleoside that is widely distributed in the central nervous system and acts as a central excitatory and inhibitory neurotransmitter in the brain. The protective role of adenosine in different pathological conditions and neurodegenerative diseases is mainly mediated by adenosine receptors. However, its potential role in mitigating the deleterious effects of oxidative stress in Friedreich's ataxia (FRDA) remains poorly understood. We aimed to investigate the protective effects of adenosine against mitochondrial dysfunction and impaired mitochondrial biogenesis in L-buthionine sulfoximine (BSO)-induced oxidative stress in dermal fibroblasts derived from an FRDA patient. The FRDA fibroblasts were pre-treated with adenosine for 2 h, followed by 12.50 mM BSO to induce oxidative stress. Cells in medium without any treatments or pre-treated with 5 µM idebenone served as the negative and positive controls, respectively. Cell viability, mitochondrial membrane potential (MMP), aconitase activity, adenosine triphosphate (ATP) level, mitochondrial biogenesis, and associated gene expressions were assessed. We observed disruption of mitochondrial function and biogenesis and alteration in gene expression patterns in BSO-treated FRDA fibroblasts. Pre-treatment with adenosine ranging from 0-600 µM restored MMP, promoted ATP production and mitochondrial biogenesis, and modulated the expression of key metabolic genes, namely nuclear respiratory factor 1 (NRF1), transcription factor A, mitochondrial (TFAM), and NFE2-like bZIP transcription factor 2 (NFE2L2). Our study demonstrated that adenosine targeted mitochondrial defects in FRDA, contributing to improved mitochondrial function and biogenesis, leading to cellular iron homeostasis. Therefore, we suggest a possible therapeutic role for adenosine in FRDA.
Collapse
Affiliation(s)
- Sze Yuen Lew
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Michael Weng Lok Phang
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | | | - Rozaida Yuen Ying Poh
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siew Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Mohd Amir Kamaruzzaman
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sze Chun Chau
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ka Chun Tsui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lee Wei Lim
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Kah Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
3
|
Umakoshi T, Urakami T, Kidoguchi H, Yang K, Verma P, Sato H, Higashi M, Tsukamoto I. Raman Spectroscopic and DFT Study of COA-Cl and Its Analogues. J Phys Chem A 2023; 127:1849-1856. [PMID: 36800899 DOI: 10.1021/acs.jpca.2c08382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
COA-Cl is a newly synthesized adenosine analogue that exhibits various physiological activities. Its angiogenic, neurotropic, and neuroprotective potencies make it promising for the development of medicines. In this study, we show Raman spectroscopic study of COA-Cl to elucidate molecular vibrations and related chemical properties. Density functional theory calculations were combined with the Raman spectroscopic data to understand the details of each vibrational mode. Comparative analysis with adenine, adenosine, and other nucleic acid analogues enabled identification of unique Raman peaks originating from the cyclobutane moiety and chloro group of COA-Cl. This study provides fundamental knowledge and crucial insights for further development of COA-Cl and related chemical species.
Collapse
Affiliation(s)
- Takayuki Umakoshi
- Institute for Advanced Co-Creation Studies, Osaka University, Suita, Osaka 565-0871, Japan.,Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan.,PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| | - Takumi Urakami
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Haruki Kidoguchi
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Keishi Yang
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Prabhat Verma
- Department of Applied Physics, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hirofumi Sato
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan.,Fukui Institute for Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan
| | - Masahiro Higashi
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Takamatsu, Kagawa 761-0793, Japan
| |
Collapse
|
4
|
Shakova FM, Kirova YI, Silachev DN, Romanova GA, Morozov SG. Protective Effects of PGC-1α Activators on Ischemic Stroke in a Rat Model of Photochemically Induced Thrombosis. Brain Sci 2021; 11:325. [PMID: 33806692 PMCID: PMC8002020 DOI: 10.3390/brainsci11030325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 11/16/2022] Open
Abstract
The pharmacological induction and activation of peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), a key regulator of ischemic brain tolerance, is a promising direction in neuroprotective therapy. Pharmacological agents with known abilities to modulate cerebral PGC-1α are scarce. This study focused on the potential PGC-1α-modulating activity of Mexidol (2-ethyl-6-methyl-3-hydroxypyridine succinate) and Semax (ACTH(4-7) analog) in a rat model of photochemical-induced thrombosis (PT) in the prefrontal cortex. Mexidol (100 mg/kg) was administered intraperitoneally, and Semax (25 μg/kg) was administered intranasally, for 7 days each. The expression of PGC-1α and PGC-1α-dependent protein markers of mitochondriogenesis, angiogenesis, and synaptogenesis was measured in the penumbra via immunoblotting at Days 1, 3, 7, and 21 after PT. The nuclear content of PGC-1α was measured immunohistochemically. The suppression of PGC-1α expression was observed in the penumbra from 24 h to 21 days following PT and reflected decreases in both the number of neurons and PGC-1α expression in individual neurons. Administration of Mexidol or Semax was associated with preservation of the neuron number and neuronal expression of PGC-1α, stimulation of the nuclear translocation of PGC-1α, and increased contents of protein markers for PGC-1α activation. This study opens new prospects for the pharmacological modulation of PGC-1α in the ischemic brain.
Collapse
Affiliation(s)
- Fatima M. Shakova
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (Y.I.K.); (G.A.R.); (S.G.M.)
| | - Yuliya I. Kirova
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (Y.I.K.); (G.A.R.); (S.G.M.)
| | - Denis N. Silachev
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Leninskye Gory 1, Bldg. 40, 119992 Moscow, Russia;
- Histology, Embryology and Cytology Department, Peoples’ Friendship University of Russia, Miklukho-Maklaya Str. 6, 117198 Moscow, Russia
| | - Galina A. Romanova
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (Y.I.K.); (G.A.R.); (S.G.M.)
| | - Sergey G. Morozov
- Institute of General Pathology and Pathophysiology, Baltiyskaya Str. 8, 125315 Moscow, Russia; (Y.I.K.); (G.A.R.); (S.G.M.)
| |
Collapse
|
5
|
Zhang Y, Shen L, Zhu H, Dreissigacker K, Distler D, Zhou X, Györfi AH, Bergmann C, Meng X, Dees C, Trinh-Minh T, Ludolph I, Horch R, Ramming A, Schett G, Distler JHW. PGC-1α regulates autophagy to promote fibroblast activation and tissue fibrosis. Ann Rheum Dis 2020; 79:1227-1233. [PMID: 32482644 DOI: 10.1136/annrheumdis-2020-216963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Coactivators are a heterogeneous family of transcriptional regulators that are essential for modulation of transcriptional outcomes and fine-tune numerous cellular processes. The aim of the present study was to evaluate the role of the coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in the pathogenesis of systemic sclerosis (SSc). METHODS Expression of PGC-1α was analysed by real-time PCR, western blot and immunofluorescence. Modulation of autophagy was analysed by reporter studies by expression of autophagy-related genes. The effects of PGC-1α knockdown on collagen production and myofibroblast differentiation were analysed in cultured human fibroblasts and in two mouse models with fibroblast-specific knockout of PGC-1α. RESULTS The expression of PGC-1α was induced in dermal fibroblasts of patients with SSc and experimental murine fibrosis. Transforming growth factor beta (TGFβ), hypoxia and epigenetic mechanisms regulate the expression of PGC-1α in fibroblasts. Knockdown of PGC-1α prevented the activation of autophagy by TGFβ and this translated into reduced fibroblast-to-myofibroblast differentiation and collagen release. Knockout of PGC-1α in fibroblasts prevented skin fibrosis induced by bleomycin and by overexpression of a constitutively active TGFβ receptor type I. Moreover, pharmacological inhibition of PGC-1α by SR18292 induced regression of pre-established, bleomycin-induced skin fibrosis. CONCLUSION PGC-1α is upregulated in SSc and promotes autophagy to foster TGFβ-induced fibroblast activation. Targeting of PGC-1α prevents aberrant autophagy, inhibits fibroblast activation and tissue fibrosis and may over therapeutic potential.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lichong Shen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Katja Dreissigacker
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Diana Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiang Zhou
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andrea Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Raymund Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
6
|
Copper mediates mitochondrial biogenesis in retinal pigment epithelial cells. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165843. [PMID: 32454166 DOI: 10.1016/j.bbadis.2020.165843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/29/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022]
Abstract
Age related macular degeneration (AMD) is a multifactorial disease with genetic, biochemical and environmental risk factors. We observed a significant increase in copper levels in choroid-RPE from donor eyeballs with AMD. Adult retinal pigment epithelial cells (ARPE19 cells) exposed to copper in-vitro showed a 2-fold increase in copper influx transporter CTR1 and copper uptake at 50 μM concentration. Further there was 2-fold increase in cytochrome C oxidase activity and a 2-fold increase in the mRNA expression of NRF 2 with copper treatment. There was a significant increase in mitochondrial biogenesis markers PGC1β and TFAM which was confirmed by mitochondrial mass and copy number. On the contrary, in AMD choroid-RPE, the CTR1 mRNA was found to be significantly down-regulated compared to its respective controls. SCO1 and PGC1β mRNA showed an increase in choroid-RPE. Our study proposes copper to play an important role in mitochondrial biogenesis in RPE cells.
Collapse
|
7
|
2-Cl-C.OXT-A stimulates contraction through the suppression of phosphodiesterase activity in human induced pluripotent stem cell-derived cardiac organoids. PLoS One 2019; 14:e0213114. [PMID: 31295264 PMCID: PMC6622471 DOI: 10.1371/journal.pone.0213114] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/24/2019] [Indexed: 01/19/2023] Open
Abstract
Background 2-Cl-C.OXT-A (COA-Cl) is a novel synthesized adenosine analog that activates Sphingosine-1-phosphate 1 receptor (S1P1R) and combines with the adenosine A1 receptor (A1R) in G proteins and was shown to enhance angiogenesis and improve the brain function in rat stroke models. However, the role of COA-Cl in hearts remains unclear. COA-Cl, which has a similar structure to xanthine derivatives, has the potential to suppress phosphodiesterase (PDE), which is an important factor involved in the beating of heart muscle. Methods and results Cardiac organoids with fibroblasts, human induced pluripotent stem cell-derived cardiac myocytes (hiPSC-CMs), and hiPSC-derived endothelial cells (hiPSC-ECs) were cultured until they started beating. The beating and contraction of organoids were observed before and after the application of COA-Cl. COA-Cl significantly increased the beating rate and fractional area change in organoids. To elucidate the mechanism underlying these effects of COA-Cl on cardiac myocytes, pure hiPSC-CM spheroids were evaluated in the presence/absence of Suramin (antagonist of A1R). The effects of COA-Cl, SEW2871 (direct stimulator of S1P1R), two positive inotropes (Isoproterenol [ISO] and Forskolin [FSK]), and negative inotrope (Propranolol [PRP]) on spheroids were assessed based on the beating rates and cAMP levels. COA-Cl stimulated the beating rates about 1.5-fold compared with ISO and FSK, while PRP suppressed the beating rate. However, no marked changes were observed with SEW2871. COA-Cl, ISO, and FSK increased the cAMP level. In contrast, the level of cAMP did not change with PRP or SEW2871 treatment. The results were the same in the presence of Suramin as absence. Furthermore, an enzyme analysis showed that COA-Cl suppressed the PDE activity by half. Conclusions COA-Cl, which has neovascularization effects, suppressed PDE and increased the contraction of cardiac organoids, independent of S1P1R and A1R. These findings suggest that COA-Cl may be useful as an inotropic agent for promoting angiogenesis in the future.
Collapse
|
8
|
Nakai K, Karita S, Igarashi J, Tsukamoto I, Hirano K, Kubota Y. COA-Cl prevented TGF-β1-induced CTGF expression by Akt dephosphorylation in normal human dermal fibroblasts, and it attenuated skin fibrosis in mice models of systemic sclerosis. J Dermatol Sci 2019; 94:205-212. [DOI: 10.1016/j.jdermsci.2019.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/19/2019] [Accepted: 02/21/2019] [Indexed: 01/13/2023]
|
9
|
Nishikido T, Oyama JI, Shiraki A, Tsukamoto I, Igarashi J, Node K. COA-Cl (2-Cl-C.OXT-A) can promote coronary collateral development following acute myocardial infarction in mice. Sci Rep 2019; 9:2533. [PMID: 30796271 PMCID: PMC6385273 DOI: 10.1038/s41598-019-39222-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023] Open
Abstract
2-Cl-C.OXT-A (COA-Cl) is a novel nucleic acid analogue that promotes tube-forming activity of human umbilical vein endothelial cells (HUVEC) through vascular endothelial growth factor (VEGF). The development of coronary collateral circulation is critical to rescue the ischemic myocardium and to prevent subsequent irreversible ischemic injury. We evaluated whether COA-Cl can promote angiogenesis in ischemic tissue, reduce infarct size and preserve cardiac contractility in vivo. Mice received COA-Cl or placebo daily for three days after myocardial infarction (MI) by coronary ligation. The degree of angiogenesis in ischemic myocardium was assessed by staining endothelial cells and vascular smooth muscle cells, and measuring infarct size/area-at-risk. In mice treated with COA-Cl, enhanced angiogenesis and smaller infarct size were recognized, even given a similar area at risk. We observed increases in the protein expression levels of VEGF and in the protein phosphorylation level of eNOS. In addition, the heart weight to body weight ratio and myocardial fibrosis in COA-Cl mice were decreased on Day 7. Administration of COA-Cl after MI promotes angiogenesis, which is associated with reduced infarct size and attenuated cardiac remodeling. This may help to prevent heart failure due to cardiac dysfunction after MI.
Collapse
Affiliation(s)
- Toshiyuki Nishikido
- Department of Cardiovascular of Medicine, Saga University Hospital, Saga, Japan
| | - Jun-Ichi Oyama
- Department of Cardiovascular of Medicine, Saga University Hospital, Saga, Japan.
| | - Aya Shiraki
- Department of Cardiovascular of Medicine, Saga University Hospital, Saga, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Kagawa University, Kagawa, Japan
| | - Junsuke Igarashi
- Graduate School of Health Sciences, Morinomiya University of Medical Sciences, Osaka, Japan
| | - Koichi Node
- Department of Cardiovascular of Medicine, Saga University Hospital, Saga, Japan
| |
Collapse
|
10
|
Kawami M, Deguchi J, Yumoto R, Sakakibara N, Tsukamoto I, Konishi R, Takano M. Effect of COA-Cl on transforming growth factor-β1-induced epithelial–mesenchymal transition in RLE/Abca3 cells. Drug Metab Pharmacokinet 2017; 32:224-227. [DOI: 10.1016/j.dmpk.2017.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/19/2017] [Accepted: 05/09/2017] [Indexed: 01/15/2023]
|
11
|
Sakakibara N, Igarashi J, Takata M, Konishi R, Kato Y, Tsukamoto I. Synthesis and Evaluation of Novel Cyclopropane Nucleoside as Potential Tube Formation Agents. Chem Pharm Bull (Tokyo) 2017; 65:504-510. [DOI: 10.1248/cpb.c17-00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Norikazu Sakakibara
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University
| | - Junsuke Igarashi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University
| | - Maki Takata
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University
| | - Ryoji Konishi
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University
| | - Yoshihisa Kato
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University
| |
Collapse
|
12
|
Igarashi J, Okamoto R, Yamashita T, Hashimoto T, Karita S, Nakai K, Kubota Y, Takata M, Yamaguchi F, Tokuda M, Sakakibara N, Tsukamoto I, Konishi R, Hirano K. A key role of PGC-1α transcriptional coactivator in production of VEGF by a novel angiogenic agent COA-Cl in cultured human fibroblasts. Physiol Rep 2016; 4:e12742. [PMID: 27033444 PMCID: PMC4814893 DOI: 10.14814/phy2.12742] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 01/16/2023] Open
Abstract
We previously demonstrated a potent angiogenic effect of a newly developed adenosine-like agent namedCOA-Cl.COA-Cl exerted tube forming activity in human umbilical vein endothelial cells in the presence of normal human dermal fibroblasts (NHDF). We therefore explored whether and howCOA-Cl modulates gene expression and protein secretion ofVEGF, a master regulator of angiogenesis, inNHDFRT-PCRandELISArevealed thatCOA-Cl upregulatedVEGF mRNAexpression and protein secretion inNHDFHIF1α(hypoxia-inducible factor 1α), a transcription factor, andPGC-1α(peroxisome proliferator-activated receptor-γcoactivator-1α), a transcriptional coactivator, are known to positively regulate theVEGFgene. Immunoblot andRT-PCRanalyses revealed thatCOA-Cl markedly upregulated the expression ofPGC-1αprotein andmRNACOA-Cl had no effect on the expression ofHIF1αprotein andmRNAin both hypoxia and normoxia. SilencingPGC-1αgene, but notHIF1αgene, by small interferingRNAattenuated the ability ofCOA-Cl to promoteVEGFsecretion. When an N-terminal fragment ofPGC-1αwas cotransfected with its partner transcription factorERRα(estrogen-related receptor-α) inCOS-7 cells,COA-Cl upregulated the expression of the endogenousVEGF mRNA However,COA-Cl had no effect on the expression ofVEGF, whenHIF1αwas transfected.COA-Cl inducesVEGFgene expression and protein secretion in fibroblasts. The transcriptional coactivatorPGC-1α, in concert withERRα, plays a key role in theCOA-Cl-inducedVEGFproduction.COA-Cl-induced activation ofPGC-1α-ERRα-VEGFpathway has a potential as a novel means for therapeutic angiogenesis.
Collapse
Affiliation(s)
- Junsuke Igarashi
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Ryuji Okamoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Tetsuo Yamashita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Takeshi Hashimoto
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Sakiko Karita
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Kozo Nakai
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Yasuo Kubota
- Department of Dermatology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Maki Takata
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Fuminori Yamaguchi
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Masaaki Tokuda
- Department of Cell Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Norikazu Sakakibara
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Japan
| | - Ikuko Tsukamoto
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Ryoji Konishi
- Department of Pharmaco-Bio-Informatics, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| | - Katsuya Hirano
- Department of Cardiovascular Physiology, Faculty of Medicine, Kagawa University, Kita-Gun, Japan
| |
Collapse
|