1
|
Abdalla LHP, Greco CC, Denadai BS. Is there a critical rate of torque development? Eur J Appl Physiol 2024:10.1007/s00421-024-05647-4. [PMID: 39565374 DOI: 10.1007/s00421-024-05647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/20/2024] [Indexed: 11/21/2024]
Abstract
The objective of this study was to test the hypothesis that neuromuscular fatigue influences the rate of torque development (RTD) in a similar manner to isometric torque. Nine men participated in this study and performed 5-min all-out isometric tests for knee extensors (KE) and plantar flexors (PF) muscles, to determine the end-test torque (ET) and the critical rate of torque development (critical RTD). Additionally, participants performed submaximal constant-torque tests to task failure for KE and PF muscles. Both maximal voluntary contraction and RTD exhibited hyperbolic behavior and reached an asymptote at the end of the 5-min all out isometric test with similar relative values (KE 29.5 ± 5.6% MVC and PF 50.9 ± 2.9% MVC and KE 25.1 ± 3.6 to 28.5 ± 4.4% RTD and PF 48.4 ± 6.5 to 52.4 ± 5.8% RTD). However, both % MVC and % RTD were statistically different between muscle groups (P < 0.05), even when normalized by muscle volume (P < 0.05). Torque and RTD after the constant-torque test were similar to the values of ET and critical RTD (P > 0.05), respectively. In this study, it was observed that neuromuscular fatigue affects RTD and torque similarly, with the magnitude of this effect varying according to the muscle size.
Collapse
Affiliation(s)
| | - Camila Coelho Greco
- Human Performance Laboratory, UNESP, Av. 24 A, 1515, Bela Vista, Rio Claro, SP, CEP-13506-900, Brazil
| | - Benedito Sérgio Denadai
- Human Performance Laboratory, UNESP, Av. 24 A, 1515, Bela Vista, Rio Claro, SP, CEP-13506-900, Brazil
| |
Collapse
|
2
|
Sears KN, Montgomery TR, Kipper CW, Kis P, Dinyer-McNeely TK, Hammer SM. Muscle microvascular oxygen delivery limitations during the contraction phase of intermittent maximal effort contractions. Eur J Appl Physiol 2024:10.1007/s00421-024-05605-0. [PMID: 39251444 DOI: 10.1007/s00421-024-05605-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
PURPOSE The end-test torque (ETT) during intermittent maximal effort contractions reflects the highest contraction intensity at which a muscle metabolic steady-state can be attained. This study determined if ETT is the highest intensity at which the contraction phase of intermittent exercise does not limit the matching of microvascular oxygen delivery to muscle oxygen demand. METHODS Microvascular oxygenation characteristics of the biceps brachii muscle were measured in sixteen young, healthy individuals (8M/8F, 22 ± 3 years, 80.9 ± 20.3 kg) by near-infrared spectroscopy during maximal effort elbow flexion under control conditions (CON) and with complete circulatory occlusion (OCC). RESULTS Increases in total-[heme] were blunted during OCC compared to CON (225 ± 87 vs. 264 ± 88 μM, p < 0.001) but OCC did not elicit a compensatory increase in deoxygenated-[heme] at any timepoint (108 ± 62 vs. 101 ± 61 μM, p > 0.05). Deoxygenated-[heme] was significantly elevated during contraction, relative to relaxation, above ETT (107 ± 60 vs. 98.8 ± 60.5 μM, p < 0.001), but not at ETT (91.7 ± 54.1 vs. 98.4 ± 62.2 μM, p = 0.174). Total-[heme] was significantly reduced during contraction, relative to relaxation, at all contraction intensities during CON (p < 0.05) and OCC (p < 0.05). CONCLUSION These data suggest that ETT may reflect the highest contraction intensity at which contraction-induced increases in intramuscular pressures do not limit muscle perfusion to a degree that requires further increases in fractional oxygen extraction (i.e., deoxygenated-[heme]) despite limited microvascular diffusive conductance (i.e., total-[heme]).
Collapse
Affiliation(s)
- Kylie N Sears
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, 180 Colvin Recreation Center, Stillwater, OK, 74078, USA
| | - Tony R Montgomery
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, 180 Colvin Recreation Center, Stillwater, OK, 74078, USA
| | - Colin W Kipper
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, 180 Colvin Recreation Center, Stillwater, OK, 74078, USA
| | - Petra Kis
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, 180 Colvin Recreation Center, Stillwater, OK, 74078, USA
| | - Taylor K Dinyer-McNeely
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, 180 Colvin Recreation Center, Stillwater, OK, 74078, USA
| | - Shane M Hammer
- School of Kinesiology, Applied Health, and Recreation, Oklahoma State University, 180 Colvin Recreation Center, Stillwater, OK, 74078, USA.
| |
Collapse
|
3
|
Abdalla LHP, Broxterman RM, Barstow TJ, Greco CC, Denadai BS. Does creatine supplementation affect recovery speed of impulse above critical torque? Eur J Sport Sci 2022:1-12. [PMID: 36519333 DOI: 10.1080/17461391.2022.2159539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We previously reported that creatine supplementation improved intermittent isometric exercise performance by augmenting the total impulse performed above end-test torque (total IET'). However, our previous analyses did not enable mechanistic assessments. The objective of this study was to determine if creatine supplementation affected the IET' speed of recovery. To achieve this objective, we retrospectively analyzed our data using the IET' balance model to determine the time constant for the recovery of IET' (τIET'). Sixteen men were randomly allocated into creatine (N = 8) or placebo (N = 8) groups. Prior to supplementation, participants performed quadriceps all-out exercise to determine end-test torque (ET) and IET'. Participants then performed quadriceps exercise at ET + 10% until task-failure before supplementation (Baseline), until task-failure after supplementation (Creatine or Placebo), and until the Baseline time after supplementation (Creatine- or Placebo-Isotime). τIET' was faster than Baseline for Creatine (669 ± 98 vs 470 ± 66 s), but not Placebo (792 ± 166 vs 786 ± 161 s). The creatine-induced change in τIET' was inversely correlated with the creatine-induced changes in both the rate of peripheral fatigue development and time to task-failure. τIET' was inversely correlated with total IET' and ET in all conditions, but creatine supplementation shifted this relationship such that τIET' was faster for a given ET. Creatine supplementation, therefore, sped the recovery of IET' during intermittent isometric exercise, which was inversely related to the improvement in exercise performance. These findings support that the improvement in exercise performance after creatine supplementation was, at least in part, specific to effects on the physiological mechanisms that determine the IET' speed of recovery. HIGHLIGHTSSixteen healthy participants were randomly allocated to creatine supplementation or placebo groups.Creatine supplementation accelerated the time constant for the recovery of IET' (τIET').The time constant for the recovery of IET' (τIET') was inversely related to both the rate of peripheral fatigue development and the time to task failure.
Collapse
Affiliation(s)
| | - Ryan Michael Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education and Clinical Center, VA Medical Center, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
4
|
Raimundo JAG, De Aguiar RA, Lisbôa FD, Ribeiro G, Caputo F. Modeling the expenditure and reconstitution of distance above critical speed during two swimming interval training sessions. Front Physiol 2022; 13:952818. [PMID: 36225303 PMCID: PMC9549135 DOI: 10.3389/fphys.2022.952818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/26/2022] [Indexed: 12/04/2022] Open
Abstract
In swimming, the speed-time relationship provides the critical speed (CS) and the maximum distance that can be performed above CS (D′). During intermittent severe intensity exercise, a complete D′ depletion coincides with task failure, while a sub-CS intensity is required for D′ reconstitution. Therefore, determining the balance D′ remaining at any time during intermittent exercise (D'BAL) could improve training prescription. This study aimed to 1) test the D'BAL model for swimming; 2) determine an equation to estimate the time constant of the reconstitution of D' (τD′); and 3) verify if τD′ is constant during two interval training sessions with the same work intensity and duration and recovery intensity, but different recovery duration. Thirteen swimmers determined CS and D′ and performed two high-intensity interval sessions at a constant speed, with repetitions fixed at 50 m. The duration of passive recovery was based on the work/relief ratio of 2:1 (T2:1) and 4:1 (T4:1). There was a high variability between sessions for τD' (coefficient of variation of 306%). When τD′ determined for T2:1 was applied in T4:1 and vice versa, the D'BAL model was inconsistent to predict the time to exhaustion (coefficient of variation of 29 and 28%). No linear or nonlinear relationships were found between τD′ and CS, possibly due to the high within-subject variability of τD'. These findings suggest that τD′ is not constant during two high-intensity interval sessions with the same recovery intensity. Therefore, the current D'BAL model was inconsistent to track D′ responses for swimming sessions tested herein.
Collapse
|
5
|
Briand J, Tremblay J, Thibault G. Can Popular High-Intensity Interval Training (HIIT) Models Lead to Impossible Training Sessions? Sports (Basel) 2022; 10:sports10010010. [PMID: 35050975 PMCID: PMC8822890 DOI: 10.3390/sports10010010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 01/25/2023] Open
Abstract
High-Intensity Interval Training (HIIT) is a time-efficient training method suggested to improve health and fitness for the clinical population, healthy subjects, and athletes. Many parameters can impact the difficulty of HIIT sessions. This study aims to highlight and explain, through logical deductions, some limitations of the Skiba and Coggan models, widely used to prescribe HIIT sessions in cycling. We simulated 6198 different HIIT training sessions leading to exhaustion, according to the Skiba and Coggan-Modified (modification of the Coggan model with the introduction of an exhaustion criterion) models, for three fictitious athlete profiles (Time-Trialist, All-Rounder, Sprinter). The simulation revealed impossible sessions (i.e., requiring athletes to surpass their maximal power output over the exercise interval duration), characterized by a few short exercise intervals, performed in the severe and extreme intensity domains, alternating with long recovery bouts. The fraction of impossible sessions depends on the athlete profile and ranges between 4.4 and 22.9% for the Skiba model and 0.6 and 3.2% for the Coggan-Modified model. For practitioners using these HIIT models, this study highlights the importance of understanding these models’ inherent limitations and mathematical assumptions to draw adequate conclusions from their use to prescribe HIIT sessions.
Collapse
Affiliation(s)
- Jérémy Briand
- Institut National du Sport du Québec, 4141 Avenue Pierre-De-Coubertin, Montreal, QC H1V 3N7, Canada; (J.B.); (G.T.)
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, 2100 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| | - Jonathan Tremblay
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, 2100 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
- Correspondence:
| | - Guy Thibault
- Institut National du Sport du Québec, 4141 Avenue Pierre-De-Coubertin, Montreal, QC H1V 3N7, Canada; (J.B.); (G.T.)
- École de Kinésiologie et des Sciences de l’Activité Physique, Faculté de Médecine, Université de Montréal, 2100 Boulevard Édouard-Montpetit, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
6
|
The W' Balance Model: Mathematical and Methodological Considerations. Int J Sports Physiol Perform 2021; 16:1561-1572. [PMID: 34686611 DOI: 10.1123/ijspp.2021-0205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 11/18/2022]
Abstract
Since its publication in 2012, the W' balance model has become an important tool in the scientific armamentarium for understanding and predicting human physiology and performance during high-intensity intermittent exercise. Indeed, publications featuring the model are accumulating, and it has been adapted for popular use both in desktop computer software and on wrist-worn devices. Despite the model's intuitive appeal, it has achieved mixed results thus far, in part due to a lack of clarity in its basis and calculation. Purpose: This review examines the theoretical basis, assumptions, calculation methods, and the strengths and limitations of the integral and differential forms of the W' balance model. In particular, the authors emphasize that the formulations are based on distinct assumptions about the depletion and reconstitution of W' during intermittent exercise; understanding the distinctions between the 2 forms will enable practitioners to correctly implement the models and interpret their results. The authors then discuss foundational issues affecting the validity and utility of the model, followed by evaluating potential modifications and suggesting avenues for further research. Conclusions: The W' balance model has served as a valuable conceptual and computational tool. Improved versions may better predict performance and further advance the physiology of high-intensity intermittent exercise.
Collapse
|
7
|
Abdalla LHP, Broxterman RM, Barstow TJ, Greco CC, Denadai BS. W' reconstitution rate at different intensities above critical torque: the role of muscle size and maximal strength. Exp Physiol 2021; 106:1909-1921. [PMID: 34288192 DOI: 10.1113/ep089638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/16/2021] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do muscle size, maximal force and exercise intensity influence the recovery time constant for the finite impulse above critical torque (τIET' )? What is the main finding and its importance? Muscle size and maximal strength have different influences on the parameters of the hyperbolic torque-time to task failure relationship. Greater muscle size and maximal strength, as well as exercise at an intensity of 60% MVC, prolong τIET' during intermittent isometric exercise. ABSTRACT Muscle perfusion and O2 delivery limitations through muscle force generation appear to play a major role in defining the hyperbolic torque-time to task failure (Tlim ) relationship. Therefore, we aimed to determine the influence of muscle size and maximal strength on the recovery time constant for the finite impulse above critical torque (τIET' ). Ten men participated in the study and performed intermittent isometric tests until task-failure (Tlim ) for the knee-extensors (KE) (35% and 60% maximal voluntary contraction (MVC)) and plantar flexors (PF) (60% MVC). The τIET' was determined for each of these Tlim tests using the IET'BAL model. The IET' (9738 ± 3080 vs. 2959 ± 1289 N m s) and end-test torque (ET)(84.5 ± 7.1 vs. 74.3 ± 12.7 N m) were significantly lower for PF compared to KE (P < 0.05). Exercise tolerance (Tlim ) was significantly longer for PF (239 ± 81 s) than KE (150 ± 55 s) at 60% MVC, and significantly longer for KE at 35% MVC (641 ± 158 s) than 60% MVC. The τIET' was significantly faster at 35% MVC (641 ± 177 s) than 60% MVC (1840 ± 354 s) for KE, both of which were significantly slower than PF at 60% MVC (317 ± 102 s). This study showed that τIET' during intermittent isometric exercise is slower with greater muscle size and maximal strength.
Collapse
Affiliation(s)
| | - Ryan Michael Broxterman
- Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education and Clinical Center, VA Medical Center, Salt Lake City, UT, USA
| | | | | | | |
Collapse
|
8
|
Azevedo RDA, Cruz R, Hasegawa JS, Gáspari AF, Chacon-Mikahil MPT, Silva-Cavalcante MD, Coelho DB, Lima-Silva AE, Bertuzzi R. Effects of induced local ischemia during a 4-km cycling time trial on neuromuscular fatigue development. Am J Physiol Regul Integr Comp Physiol 2021; 320:R812-R823. [PMID: 33787348 DOI: 10.1152/ajpregu.00312.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present study analyzed the effects of local ischemia during endurance exercise on neuromuscular fatigue (NMF). Nine cyclists performed, in a counterbalanced order, two separate 4-km cycling time trials (TT) with (ISCH) or without (CONTR) induced local ischemia. NMF was characterized by using isometric maximal voluntary contractions (IMVC), whereas central [voluntary activation (VA)] and peripheral fatigue [peak torque of potentiated twitch (TwPt)] of knee extensors were evaluated using electrically evoked contractions performed before (PRE) and 1 min after (POST) the TT. Electromyographic activity (EMG), power output (PO), oxygen uptake (V̇o2), and rating of perceived exertion (RPE) were also recorded. The decrease in IMVC (-15 ± 9% vs. -10 ± 8%, P = 0.66), VA (-4 ± 3% vs. -3 ± 3%, P = 0.46), and TwPt (-16 ± 7% vs. -19 ± 14%, P = 0.67) was similar in ISCH and CONTR. Endurance performance was drastically reduced in ISCH condition (512 ± 29 s) compared with CONTR (386 ± 17 s) (P < 0.001), which was accompanied by lower EMG, PO, and V̇o2 responses (all P < 0.05). RPE was greater in ISCH compared with CONTR (P < 0.05), but the rate of change was similar throughout the TT (8.19 ± 2.59 vs. 7.81 ± 2.01 RPE.% of total time-1, P > 0.05). These results indicate that similar end-exercise NMF levels were accompanied by impaired endurance performance in ISCH compared with CONTR. These novel findings suggest that the local reduced oxygen availability affected the afferent feedback signals to the central nervous system, ultimately increasing perceived effort and reducing muscle activity and exercise intensity to avoid surpassing a sensory tolerance limit before the finish line.
Collapse
Affiliation(s)
- Rafael de Almeida Azevedo
- Endurance Performance Research Group, School of Physical Education and Sport , University of São Paulo, São Paulo, Brazil
| | - Ramon Cruz
- Endurance Performance Research Group, School of Physical Education and Sport , University of São Paulo, São Paulo, Brazil
| | - Julio Satoshi Hasegawa
- Endurance Performance Research Group, School of Physical Education and Sport , University of São Paulo, São Paulo, Brazil
| | - Arthur Fernandes Gáspari
- Laboratory of Exercise Physiology, School of Physical Education, University of Campinas, Campinas, São Paulo, Brazil
| | | | - Marcos David Silva-Cavalcante
- Endurance Performance Research Group, School of Physical Education and Sport , University of São Paulo, São Paulo, Brazil.,Faculty of Nutrition. Federal University of Alagoas, Maceio, Alagoas, Brazil
| | - Daniel Boari Coelho
- Center of Engineering, Modeling, and Applied Social Science, Federal University of ABC, Sao Paulo, Brazil
| | - Adriano E Lima-Silva
- Faculty of Nutrition. Federal University of Alagoas, Maceio, Alagoas, Brazil.,Human Performance Research Group, Federal University of Technology - Parana, Parana, Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group, School of Physical Education and Sport , University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Azevedo RA, Milioni F, Murias JM, Bertuzzi R, Millet GY. Dynamic Changes of Performance Fatigability and Muscular O2 Saturation in a 4-km Cycling Time Trial. Med Sci Sports Exerc 2021; 53:613-623. [PMID: 33300756 DOI: 10.1249/mss.0000000000002499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE The current study characterized the performance fatigability etiology, immediately after exercise cessation, and its relation to the dynamic changes in muscle O2 saturation (SmO2) at different TT phases. METHODS Twelve males performed three separated TT of different distances, in a crossover counterbalanced design, until the end of the fast-start (FS, 827 ± 135 m), even-pace (EP, 3590 ± 66 m), or end-spurt (ES, 4000 m) TT phases. Performance fatigability was characterized by using isometric maximal voluntary contractions (IMVC), whereas the maximal voluntary activation (VA) and contractile function of knee extensors (e.g., peak torque of potentiated twitches [TwPt]) were evaluated using electrically evoked contractions performed before and immediately after each exercise bouts. SmO2, power output (PO), and EMG were also recorded. RESULTS Immediately after the FS phase, there were lower values for IMVC (-23%), VA (-8%), and TwPt (-43%) (all P < 0.001), but no further changes were measured after EP (IMVC, -28%; VA, -8%; TwPt, -38%). After the ES phase, IMVC (-34%) and TwPt (-59%) further decreased compared with the previous phases (P < 0.05). There were lower SmO2 and higher EMG/PO values during FS and ES compared with EP phase. CONCLUSION FS and EP phases had similar performance fatigability etiology, but ES showed further impairments in contractile function. This later finding might be due to the abrupt changes in SmO2 and EMG/PO because of the high exercise intensity during the ES, which elicited maximal decline in contractile function at the finish line.
Collapse
Affiliation(s)
| | | | - Juan M Murias
- Faculty of Kinesiology, University of Calgary, CANADA
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), School of Physical Education and Sport (GEDAE-USP), University of São Paulo, São Paulo, BRAZIL
| | | |
Collapse
|
10
|
do Nascimento Salvador PC, de Lucas RD, Schäfer L, Guglielmo LGA, Grassi B, Denadai BS. Modeling the depletion and reconstitution of W': Effects of prior exercise on cycling tolerance. Respir Physiol Neurobiol 2020; 285:103590. [PMID: 33271307 DOI: 10.1016/j.resp.2020.103590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 11/29/2022]
Abstract
Thirteen healthy male subjects (age 28 ± 7 years) performed tests for critical power and W' determination and two square-wave high-intensity exercises until exhaustion either with prior very-heavy intensity cycling (EXP) or without (CON). Prior exercise bout induced a depletion of 60 % of W'. After 10 min of recovery, W' reconstitution was not fully achieved (∼ 92 %). Time to exhaustion and Δ blood lactate concentration were significantly lower in EXP compared to CON (595 ± 118 s vs. 683 ± 148 s; 3.5 ± 1.2 mmol.L-1 vs. 8.8 ± 2.3 mmol.L-1; p < 0.05, respectively). Oxygen uptake (VO2) and heart rate were significantly higher in EXP, during the first 150 s of exercise (p < 0.05). The carbon dioxide production kinetics was significantly slower in EXP (mean response time = 87.8 ± 17.8 s vs. 73.7 ± 16.6 s in CON; p < 0.05). Thus, prior exercise impairs high-intensity cycling performance which can partly be explained by physiological disturbances linked to W' depletion.
Collapse
Affiliation(s)
| | - Ricardo Dantas de Lucas
- Physical Effort Laboratory, Sports Center, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Lisa Schäfer
- Centre for Sport and Exercise Science and Medicine, University of Brighton, United Kingdom
| | | | - Bruno Grassi
- Exercise Physiology Laboratory, Department of Medicine, Università Degli Studi Di Udine, Italy
| | | |
Collapse
|
11
|
The Application of Critical Power, the Work Capacity above Critical Power (W'), and its Reconstitution: A Narrative Review of Current Evidence and Implications for Cycling Training Prescription. Sports (Basel) 2020; 8:sports8090123. [PMID: 32899777 PMCID: PMC7552657 DOI: 10.3390/sports8090123] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 12/17/2022] Open
Abstract
The two-parameter critical power (CP) model is a robust mathematical interpretation of the power–duration relationship, with CP being the rate associated with the maximal aerobic steady state, and W′ the fixed amount of tolerable work above CP available without any recovery. The aim of this narrative review is to describe the CP concept and the methodologies used to assess it, and to summarize the research applying it to intermittent cycle training techniques. CP and W′ are traditionally assessed using a number of constant work rate cycling tests spread over several days. Alternatively, both the 3-min all-out and ramp all-out protocols provide valid measurements of CP and W′ from a single test, thereby enhancing their suitability to athletes and likely reducing errors associated with the assumptions of the CP model. As CP represents the physiological landmark that is the boundary between heavy and severe intensity domains, it presents several advantages over the de facto arbitrarily defined functional threshold power as the basis for cycle training prescription at intensities up to CP. For intensities above CP, precise prescription is not possible based solely on aerobic measures; however, the addition of the W′ parameter does facilitate the prescription of individualized training intensities and durations within the severe intensity domain. Modelling of W′ reconstitution extends this application, although more research is needed to identify the individual parameters that govern W′ reconstitution rates and their kinetics.
Collapse
|
12
|
Felippe LC, Melo TG, Silva-Cavalcante MD, Ferreira GA, Boari D, Bertuzzi R, Lima-Silva AE. Relationship between recovery of neuromuscular function and subsequent capacity to work above critical power. Eur J Appl Physiol 2020; 120:1237-1249. [DOI: 10.1007/s00421-020-04338-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 03/04/2020] [Indexed: 01/06/2023]
|
13
|
Ansdell P, Brownstein CG, Škarabot J, Hicks KM, Howatson G, Thomas K, Hunter SK, Goodall S. Sex differences in fatigability and recovery relative to the intensity-duration relationship. J Physiol 2019; 597:5577-5595. [PMID: 31529693 DOI: 10.1113/jp278699] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022] Open
Abstract
KEY POINTS Females demonstrate greater fatigue resistance than males during contractions at intensities relative to maximum force. However, previous studies have not accounted for the influence of metabolic thresholds on fatigability. This study is the first to test whether sex differences in fatigability exist when exercise intensity is normalised relative to a metabolic threshold: the critical intensity derived from assessment of the intensity-duration relationship during intermittent, isometric knee extensor contractions. We show that critical intensity in females occurred at a higher percentage of maximum force compared to males. Furthermore, females demonstrated greater fatigue resistance at exercise intensities above and below this metabolic threshold. Our data suggest that the sex difference was mediated by lesser deoxygenation of the knee extensors during exercise. These data highlight the importance of accounting for metabolic thresholds when comparing fatigability between sexes, whilst emphasising the notion that male data are not generalisable to female populations. ABSTRACT Females are less fatigable than males during isometric exercise at intensities relative to maximal voluntary contraction (MVC); however, whether a sex difference in fatigability exists when exercise is prescribed relative to a critical intensity is unknown. This study established the intensity-duration relationship, and compared fatigability and recovery between sexes following intermittent isometric contractions normalised to critical intensity. Twenty participants (10 females) completed four intermittent isometric knee extension trials to task failure to determine critical intensity and the curvature constant (W'), followed by fatiguing tasks at +10% and -10% relative to critical intensity. Neuromuscular assessments were completed at baseline and for 45 min post-exercise. Non-invasive neurostimulation, near-infrared spectroscopy, and non-invasive haemodynamic monitoring were used to elucidate the physiological mechanisms responsible for sex differences. Females demonstrated a greater critical intensity relative to MVC than males (25 ± 3 vs. 21 ± 2% MVC, P = 0.003), with no sex difference for W' (18,206 ± 6331 vs. 18,756 ± 5762 N s, P = 0.850). Time to task failure was greater for females (62.37 ± 17.25 vs. 30.43 ± 12.75 min, P < 0.001) during the +10% trial, and contractile function recovered faster post-exercise (P = 0.034). During the -10% trial females experienced less contractile dysfunction (P = 0.011). Throughout the +10% trial, females demonstrated lesser decreases in deoxyhaemoglobin (P = 0.007) and an attenuated exercise pressor reflex. These data show that a sex difference in fatigability exists even when exercise is matched for critical intensity. We propose that greater oxygen availability during exercise permits females to sustain a higher relative intensity than males, and is an explanatory factor for the sex difference in fatigability during intermittent, isometric contractions.
Collapse
Affiliation(s)
- Paul Ansdell
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Callum G Brownstein
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.,Université Lyon, UJM-Saint-Etienne, Inter-university Laboratory of Human Movement Biology, Saint-Etienne, France
| | - Jakob Škarabot
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Kirsty M Hicks
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK.,Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Kevin Thomas
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Sandra K Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, USA
| | - Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| |
Collapse
|
14
|
Slowing the Reconstitution of W' in Recovery With Repeated Bouts of Maximal Exercise. Int J Sports Physiol Perform 2019; 14:149-155. [PMID: 29952673 DOI: 10.1123/ijspp.2018-0256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE This study examined the partial reconstitution of the work capacity above critical power (W') following successive bouts of maximal exercise using a new repeated ramp test, against which the fit of an existing W' balance ( Wbal' ) prediction model was tested. METHODS Twenty active adults, consisting of trained cyclists (n = 9; age 43 [15] y, V˙O2max 61.9 [8.5] mL·kg-1·min-1) and untrained cyclists (n = 11; age 36 [15] y, V˙O2max 52.4 [5.8] mL·kg-1·min-1) performed 2 tests 2 to 4 d apart, consisting of 3 incremental ramps (20 W·min-1) to exhaustion interspersed with 2-min recoveries. RESULTS Intratrial differences between recoveries demonstrated significant reductions in the amount of W' reconstituted for the group and both subsets (P < .05). The observed minimal detectable changes of 475 J (first recovery) and 368 J (second recovery) can be used to monitor changes in the rate of W' reconstitution in individual trained cyclists. Intertrial relative reliability of W' reconstitution was evaluated by intraclass correlation coefficients for the group (≥.859) and the trained (≥.940) and untrained (≥.768) subsets. Absolute reliability was evaluated with typical error (TE) and coefficient of variation (CV) for the group (TE ≤ 559 J, CV ≤ 9.2%), trained (TE ≤ 301 J, CV ≤ 4.7%), and untrained (TE ≤ 720 J, CV ≤ 12.4%). CONCLUSIONS The reconstitution of W' is subject to a fatiguing effect hitherto unaccounted for in Wbal' prediction models. Furthermore, the Wbal' model did not provide a good fit for the repeated ramp test, which itself proved to be a reliable test protocol.
Collapse
|
15
|
Felippe LC, Ferreira GA, Learsi SK, Boari D, Bertuzzi R, Lima-Silva AE. Caffeine increases both total work performed above critical power and peripheral fatigue during a 4-km cycling time trial. J Appl Physiol (1985) 2018; 124:1491-1501. [PMID: 29470151 DOI: 10.1152/japplphysiol.00930.2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The link between total work performed above critical power (CP) and peripheral muscle fatigue during self-paced exercise is unknown. We investigated the influence of caffeine on the total work done above CP during a 4-km cycling time trial (TT) and the subsequent consequence on the development of central and peripheral fatigue. Nine cyclists performed three constant-load exercise trials to determine CP and two 4-km TTs ~75 min after oral caffeine (5 mg/kg) or cellulose (placebo) ingestion. Neuromuscular functions were assessed before and 50 min after supplementation and 1 min after TT. Oral supplementation alone had no effect on neuromuscular function ( P > 0.05). Compared with placebo, caffeine increased mean power output (~4%, P = 0.01) and muscle recruitment (as inferred by EMG, ~17%, P = 0.01) and reduced the time to complete the TT (~2%, P = 0.01). Work performed above CP during the caffeine trial (16.7 ± 2.1 kJ) was significantly higher than during the placebo (14.7 ± 2.1 kJ, P = 0.01). End-exercise decline in quadriceps twitch force (pre- to postexercise decrease in twitch force at 1 and 10 Hz) was more pronounced after caffeine compared with placebo (121 ± 13 and 137 ± 14 N vs. 146 ± 13 and 156 ± 11 N; P < 0.05). There was no effect of caffeine on central fatigue. In conclusion, caffeine increases muscle recruitment, which enables greater work performed above CP and higher end-exercise peripheral locomotor muscle fatigue. NEW & NOTEWORTHY The link between total work done above critical power and peripheral fatigue during a self-paced, high-intensity exercise is unclear. This study revealed that caffeine ingestion increases muscle recruitment, which enables greater work done above critical power and a greater degree of end-exercise decline in quadriceps twitch force during a 4-km cycling time trial. These findings suggest that caffeine increases performance at the expense of greater locomotor muscle fatigue.
Collapse
Affiliation(s)
| | | | - Sara Kely Learsi
- Sport Science Research Group, Federal University of Pernambuco , Pernambuco , Brazil
| | - Daniel Boari
- Center of Engineering, Modeling, and Applied Social Science, Federal University of ABC , São Paulo , Brazil
| | - Romulo Bertuzzi
- Endurance Performance Research Group (GEDAE-USP), University of São Paulo , São Paulo , Brazil
| | - Adriano Eduardo Lima-Silva
- Sport Science Research Group, Federal University of Pernambuco , Pernambuco , Brazil.,Human Performance Research Group, Technological Federal University of Parana, Parana, Brazil
| |
Collapse
|
16
|
Relationship between power–duration parameters and mechanical and anthropometric properties of the thigh in elite cyclists. Eur J Appl Physiol 2018; 118:637-645. [DOI: 10.1007/s00421-018-3807-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/14/2018] [Indexed: 10/18/2022]
|
17
|
Broxterman RM, Skiba PF, Craig JC, Wilcox SL, Ade CJ, Barstow TJ. W' expenditure and reconstitution during severe intensity constant power exercise: mechanistic insight into the determinants of W'. Physiol Rep 2017; 4:4/19/e12856. [PMID: 27688431 PMCID: PMC5064128 DOI: 10.14814/phy2.12856] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 06/16/2016] [Indexed: 11/24/2022] Open
Abstract
The sustainable duration of severe intensity exercise is well-predicted by critical power (CP) and the curvature constant (W'). The development of the W'BAL model allows for the pattern of W' expenditure and reconstitution to be characterized and this model has been applied to intermittent exercise protocols. The purpose of this investigation was to assess the influence of relaxation phase duration and exercise intensity on W' reconstitution during dynamic constant power severe intensity exercise. Six men (24.6 ± 0.9 years, height: 173.5 ± 1.9 cm, body mass: 78.9 ± 5.6 kg) performed severe intensity dynamic handgrip exercise to task failure using 50% and 20% duty cycles. The W'BAL model was fit to each exercise test and the time constant for W' reconstitution (τW') was determined. The τW' was significantly longer for the 50% duty cycle (1640 ± 262 sec) than the 20% duty cycle (863 ± 84 sec, P = 0.02). Additionally, the relationship between τW' and CP was well described as an exponential decay (r(2) = 0.90, P < 0.0001). In conclusion, the W'BAL model is able to characterize the expenditure and reconstitution of W' across the contraction-relaxation cycles comprising severe intensity constant power handgrip exercise. Moreover, the reconstitution of W' during constant power severe intensity exercise is influenced by the relative exercise intensity, the duration of relaxation between contractions, and CP.
Collapse
Affiliation(s)
- Ryan M Broxterman
- Department of Kinesiology, Kansas State University, Manhattan, Kansas Department of Anatomy and Physiology, Kansas State University, Manhattan, Kansas
| | - Phillip F Skiba
- Department of Sports Medicine, Advocate Lutheran General Hospital, Park Ridge, Illinois
| | - Jesse C Craig
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Samuel L Wilcox
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| | - Carl J Ade
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Thomas J Barstow
- Department of Kinesiology, Kansas State University, Manhattan, Kansas
| |
Collapse
|