1
|
Nowicki C, Ganse B. Near-Infrared Spectroscopy Allows for Monitoring of Bone Fracture Healing via Changes in Oxygenation. J Funct Biomater 2024; 15:384. [PMID: 39728184 DOI: 10.3390/jfb15120384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Bone fractures are associated with hypoxia, but no longitudinal studies of perfusion measurements in human patients have been reported despite the clinical and research potential. In this longitudinal observational cohort study, the near-infrared spectroscopy (NIRS) device PortaMon was used to assess oxy-(O2Hb), deoxy-(HHb) and total (tHb) haemoglobin, as well as the differences between O2Hb and HHb (HbDiff) and the tissue saturation index (TSI) at three different depths in the fracture gap. Linear mixed effect models were fitted to analyse time effects. One-way ANOVAs were conducted to compare groups. The time points corresponding to minima were calculated via linear regression. In this study, 11 patients with tibial shaft fractures underwent longitudinal measurements. Additionally, 9 patients with diagnosed tibial shaft nonunion and 23 age-matched controls were measured once. In the longitudinal group, all fractures healed, and decreases in O2Hb and HbDiff (all p < 0.05) were observed, with minima occurring 19-21 days after fracture. O2Hb values in nonunion patients did not differ from the minima in longitudinally measured union patients, whereas differences in HHb and tHb were significant (all p < 0.05). Previously, the onset of hypoxia has been assumed to be much faster. The characteristic trajectories of the NIRS parameters O2Hb and HbDiff can be used to fulfil the need for a non-invasive method to monitor fracture healing. These results suggest that NIRS could supplement radiographs and clinical impressions in daily clinical practice and may enable earlier diagnosis of nonunion.
Collapse
Affiliation(s)
- Cedric Nowicki
- Innovative Implant Development (Fracture Healing), Departments and Institutes of Surgery, Saarland University, 66421 Homburg, Germany
| | - Bergita Ganse
- Innovative Implant Development (Fracture Healing), Departments and Institutes of Surgery, Saarland University, 66421 Homburg, Germany
- Department of Trauma, Hand and Reconstructive Surgery, Departments and Institutes of Surgery, Saarland University, 66421 Homburg, Germany
| |
Collapse
|
2
|
Hughes L, Centner C. Idiosyncratic bone responses to blood flow restriction exercise: new insights and future directions. J Appl Physiol (1985) 2024; 136:283-297. [PMID: 37994414 PMCID: PMC11212818 DOI: 10.1152/japplphysiol.00723.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 11/14/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023] Open
Abstract
Applying blood flow restriction (BFR) during low-load exercise induces beneficial adaptations of the myotendinous and neuromuscular systems. Despite the low mechanical tension, BFR exercise facilitates a localized hypoxic environment and increase in metabolic stress, widely regarded as the primary stimulus for tissue adaptations. First evidence indicates that low-load BFR exercise is effective in promoting an osteogenic response in bone, although this has previously been postulated to adapt primarily during high-impact weight-bearing exercise. Besides studies investigating the acute response of bone biomarkers following BFR exercise, first long-term trials demonstrate beneficial adaptations in bone in both healthy and clinical populations. Despite the increasing number of studies, the physiological mechanisms are largely unknown. Moreover, heterogeneity in methodological approaches such as biomarkers of bone metabolism measured, participant and study characteristics, and time course of measurement renders it difficult to formulate accurate conclusions. Furthermore, incongruity in the methods of BFR application (e.g., cuff pressure) limits the comparability of datasets and thus hinders generalizability of study findings. Appropriate use of biomarkers, effective BFR application, and befitting study design have the potential to progress knowledge on the acute and chronic response of bone to BFR exercise and contribute toward the development of a novel strategy to protect or enhance bone health. Therefore, the purpose of the present synthesis review is to 1) evaluate current mechanistic evidence; 2) discuss and offer explanations for similar and contrasting data findings; and 3) create a methodological framework for future mechanistic and applied research.
Collapse
Affiliation(s)
- Luke Hughes
- Department of Sport Exercise & Rehabilitation, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Christoph Centner
- Department of Sport and Sport Science, University of Freiburg, Freiburg, Germany
- Praxisklinik Rennbahn, Muttenz, Switzerland
| |
Collapse
|
3
|
Picone DS, Kodithuwakku V, Mayer CC, Chapman N, Rehman S, Climie RE. Sex differences in pressure and flow waveform physiology across the life course. J Hypertens 2022; 40:2373-2384. [PMID: 36093877 DOI: 10.1097/hjh.0000000000003283] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cardiovascular disease (CVD) has long been deemed a disease of old men. However, in 2019 CVD accounted for 35% of all deaths in women and, therefore, remains the leading cause of death in both men and women. There is increasing evidence to show that risk factors, pathophysiology and health outcomes related to CVD differ in women compared with men, yet CVD in women remains understudied, underdiagnosed and undertreated. Differences exist between the sexes in relation to the structure of the heart and vasculature, which translate into differences in blood pressure and flow waveform physiology. These physiological differences between women and men may represent an important explanatory factor contributing to the sex disparity in CVD presentation and outcomes but remain understudied. In this review we aim to describe sex differences in arterial pressure and flow waveform physiology and explore how they may contribute to differences in CVD in women compared to men. Given that unfavourable alterations in the cardiovascular structure and function can start as early as in utero, we report sex differences in waveform physiology across the entire life course.
Collapse
Affiliation(s)
- Dean S Picone
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | | | - Christopher C Mayer
- Medical Signal Analysis, Center for Health & Bioresources, AIT Austrian Institute of Technology, Vienna, Austria
| | - Niamh Chapman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Sabah Rehman
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia
| |
Collapse
|
4
|
Mehta RK, Nuamah J. Relationship Between Acute Physical Fatigue and Cognitive Function During Orthostatic Challenge in Men and Women: A Neuroergonomics Investigation. HUMAN FACTORS 2021; 63:1437-1448. [PMID: 32686497 DOI: 10.1177/0018720820936794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Postflight orthostatic challenge (OC), resulting from blood pooling in lower extremities, is a major health concern among astronauts that fly long-duration missions. Additionally, astronauts undergo physical demanding tasks resulting in acute fatigue, which can affect performance. However, the effects of concurrent OC and acute physical fatigue on performance have not been adequately investigated. OBJECTIVE The purpose of this study was to determine the relationship between acute physical fatigue and cognitive function during OC. METHODS Sixteen healthy participants performed the mental arithmetic task and psychomotor tracking tasks in the absence and presence of a prior 1-hour physically fatiguing exercise, on separate days under OC (induced via lower body negative pressure). We recorded task performances on the cognitive tests and prefrontal cortex oxygenation using functional near-infrared spectroscopy, along with physiological and subjective responses. RESULTS The introduction of the cognitive tasks during OC increased cerebral oxygenation; however, oxygenation decreased significantly with the cognitive tasks under the acute fatigue conditions, particularly during the tracking task and in males. These differences were accompanied by comparable task performances. DISCUSSION The findings suggest that mental arithmetic is a more effective countermeasure than psychomotor tracking under acute physical fatigue during OC. Whereas females did not show a significant difference in cerebral oxygenation due to task, males did, suggesting that it may be important to consider gender differences when developing countermeasures against OC.
Collapse
|
5
|
Whittle RS, Diaz-Artiles A. Modeling individual differences in cardiovascular response to gravitational stress using a sensitivity analysis. J Appl Physiol (1985) 2021; 130:1983-2001. [PMID: 33914657 DOI: 10.1152/japplphysiol.00727.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The human cardiovascular (CV) system elicits a physiological response to gravitational environments, with significant variation between different individuals. Computational modeling can predict CV response, however model complexity and variation of physiological parameters in a normal population makes it challenging to capture individual responses. We conducted a sensitivity analysis on an existing 21-compartment lumped-parameter hemodynamic model in a range of gravitational conditions to 1) investigate the influence of model parameters on a tilt test CV response and 2) to determine the subset of those parameters with the most influence on systemic physiological outcomes. A supine virtual subject was tilted to upright under the influence of a constant gravitational field ranging from 0 g to 1 g. The sensitivity analysis was conducted using a Latin hypercube sampling/partial rank correlation coefficient methodology with subsets of model parameters varied across a normal physiological range. Sensitivity was determined by variation in outcome measures including heart rate, stroke volume, central venous pressure, systemic blood pressures, and cardiac output. Results showed that model parameters related to the length, resistance, and compliance of the large veins and parameters related to right ventricular function have the most influence on model outcomes. For most outcome measures considered, parameters related to the heart are dominant. Results highlight which model parameters to accurately value in simulations of individual subjects' CV response to gravitational stress, improving the accuracy of predictions. Influential parameters remain largely similar across gravity levels, highlighting that accurate model fitting in 1 g can increase the accuracy of predictive responses in reduced gravity.NEW & NOTEWORTHY Computational modeling is used to predict cardiovascular responses to altered gravitational environments. However, considerable variation between subjects and model complexity makes accurate parameter assignment for individuals challenging. This computational effort studies sensitivity in cardiovascular model outcomes due to varying parameters across a normal physiological range. This allows determination of which parameters have the largest influence on outcomes, i.e., which parameters must be most carefully selected to give accurate predictions of individual responses.
Collapse
Affiliation(s)
- Richard S Whittle
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas
| | - Ana Diaz-Artiles
- Department of Aerospace Engineering, Texas A&M University, College Station, Texas.,Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
6
|
Gerega A, Wojtkiewicz S, Sawosz P, Kacprzak M, Toczylowska B, Bejm K, Skibniewski F, Sobotnicki A, Gacek A, Maniewski R, Liebert A. Assessment of the brain ischemia during orthostatic stress and lower body negative pressure in air force pilots by near-infrared spectroscopy. BIOMEDICAL OPTICS EXPRESS 2020; 11:1043-1060. [PMID: 32133236 PMCID: PMC7041453 DOI: 10.1364/boe.377779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 05/26/2023]
Abstract
A methodology for the assessment of the cerebral hemodynamic reaction to normotensive hypovolemia, reduction in cerebral perfusion and orthostatic stress leading to ischemic hypoxia and reduced muscular tension is presented. Most frequently, the pilots of highly maneuverable aircraft are exposed to these phenomena. Studies were carried out using the system consisting of a chamber that generates low pressure around the lower part of the body - LBNP (lower body negative pressure) placed on the tilt table. An in-house developed 6-channel NIRS system operating at 735 and 850 nm was used in order to assess the oxygenation of the cerebral cortex, based on measurements of diffusely reflected light in reflectance geometry. The measurements were carried out on a group of 12 active pilots and cadets of the Polish Air Force Academy and 12 healthy volunteers. The dynamics of changes in cerebral oxygenation was evaluated as a response to LBNP stimuli with a simultaneous rapid change of the tilt table angle. Parameters based on calculated changes of total hemoglobin concentration were proposed allowing to evaluate differences in reactions observed in control subjects and pilots/cadets. The results of orthogonal partial least squares-discriminant analysis based on these parameters show that the subjects can be classified into their groups with 100% accuracy.
Collapse
Affiliation(s)
- Anna Gerega
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Stanislaw Wojtkiewicz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Sawosz
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Michal Kacprzak
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Beata Toczylowska
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Bejm
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Franciszek Skibniewski
- Technical Department of Aeromedical Research and Flight Simulators, Military Institute of Aviation Medicine, Warsaw, Poland
| | - Aleksander Sobotnicki
- Department of Research and Development, Institute of Medical Technology and Equipment, Zabrze, Poland
| | - Adam Gacek
- Department of Research and Development, Institute of Medical Technology and Equipment, Zabrze, Poland
| | - Roman Maniewski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Adam Liebert
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
7
|
Meertens R, Casanova F, Knapp KM, Thorn C, Strain WD. Use of near-infrared systems for investigations of hemodynamics in human in vivo bone tissue: A systematic review. J Orthop Res 2018; 36:2595-2603. [PMID: 29727022 DOI: 10.1002/jor.24035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 04/27/2018] [Indexed: 02/04/2023]
Abstract
A range of technologies using near infrared (NIR) light have shown promise at providing real time measurements of hemodynamic markers in bone tissue in vivo, an exciting prospect given existing difficulties in measuring hemodynamics in bone tissue. This systematic review aimed to evaluate the evidence for this potential use of NIR systems, establishing their potential as a research tool in this field. Major electronic databases including MEDLINE and EMBASE were searched using pre-planned search strategies with broad scope for any in vivo use of NIR technologies in human bone tissue. Following identification of studies by title and abstract screening, full text inclusion was determined by double blind assessment using predefined criteria. Full text studies for inclusion were data extracted using a predesigned proforma and quality assessed. Narrative synthesis was appropriate given the wide heterogeneity of included studies. Eighty-eight full text studies fulfilled the inclusion criteria, 57 addressing laser Doppler flowmetry (56 intra-operatively), 21 near infrared spectroscopy, and 10 photoplethysmography. The heterogeneity of the methodologies included differing hemodynamic markers, measurement protocols, anatomical locations, and research applications, making meaningful direct comparisons impossible. Further, studies were often limited by small sample sizes with potential selection biases, detection biases, and wide variability in results between participants. Despite promising potential in the use of NIR light to interrogate bone circulation, the application of NIR systems in bone requires rigorous assessment of the reproducibility of potential hemodynamic markers and further validation of these markers against alternative physiologically relevant reference standards. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:2595-2603, 2018.
Collapse
Affiliation(s)
- Robert Meertens
- Medical Imaging, University of Exeter Medical School, South Cloisters, St Luke's Campus, Heavitree Road, Exeter EX2 1LU, United Kingdom
| | - Francesco Casanova
- Diabetes and Vascular Research Centre, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - Karen M Knapp
- Medical Imaging, University of Exeter Medical School, South Cloisters, St Luke's Campus, Heavitree Road, Exeter EX2 1LU, United Kingdom
| | - Clare Thorn
- Diabetes and Vascular Research Centre, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Barrack Rd, Exeter EX2 5DW, United Kingdom
| | - William David Strain
- Diabetes and Vascular Research Centre, University of Exeter Medical School and National Institute of Health Research Exeter Clinical Research Facility, Barrack Rd, Exeter EX2 5DW, United Kingdom
| |
Collapse
|
8
|
Liang Y, Elgendi M, Chen Z, Ward R. An optimal filter for short photoplethysmogram signals. Sci Data 2018; 5:180076. [PMID: 29714722 PMCID: PMC5928853 DOI: 10.1038/sdata.2018.76] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022] Open
Abstract
A photoplethysmogram (PPG) contains a wealth of cardiovascular system information, and with the development of wearable technology, it has become the basic technique for evaluating cardiovascular health and detecting diseases. However, due to the varying environments in which wearable devices are used and, consequently, their varying susceptibility to noise interference, effective processing of PPG signals is challenging. Thus, the aim of this study was to determine the optimal filter and filter order to be used for PPG signal processing to make the systolic and diastolic waves more salient in the filtered PPG signal using the skewness quality index. Nine types of filters with 10 different orders were used to filter 219 (2.1s) short PPG signals. The signals were divided into three categories by PPG experts according to their noise levels: excellent, acceptable, or unfit. Results show that the Chebyshev II filter can improve the PPG signal quality more effectively than other types of filters and that the optimal order for the Chebyshev II filter is the 4th order.
Collapse
Affiliation(s)
- Yongbo Liang
- School of Electrical and Computer Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada.,School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, PR China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Mohamed Elgendi
- School of Electrical and Computer Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, V6T 1Z3, Canada.,BC Children's & Women's Hospital, Vancouver, V6H 3N1, Canada
| | - Zhencheng Chen
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, PR China.,School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Rabab Ward
- School of Electrical and Computer Engineering, University of British Columbia, Vancouver, V6T 1Z4, Canada
| |
Collapse
|
9
|
Huxley VH, Kemp SS. Sex-Specific Characteristics of the Microcirculation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:307-328. [PMID: 30051393 DOI: 10.1007/978-3-319-77932-4_20] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The requirements of metabolizing tissue are both continuous and variable; accordingly, the microvasculature serving that tissue must be similarly dynamic. Just as it is recognized that males and females of the same species have differing metabolic requirements, is it not likely that the microvasculature serving these tissues will differ by sex? This section focusing on the constituents of the microcirculation identifies what is known presently about the role sex plays in matching metabolic demand with microvascular function and areas requiring additional study. Many of the identified sex differences are subtle and easily ignored. In the aggregate, though, they can profoundly alter phenotype, especially under stressful conditions including pregnancy, exercise, and disease states ranging from diabetes to heart failure. Although the features presently identified to "have sex" range from differences in growth, morphology, protein expression, and intracellular signaling, males and females alike achieve homeostasis, likely by different means. Studies of microvascular sexual dimorphism are also identifying age as an independent but interacting factor requiring additional attention. Overall, attempting to ignore either sex and/or age is inappropriate and will prevent the design and implementation of appropriate interventions to present, ameliorate, or correct microvascular dysfunction.
Collapse
Affiliation(s)
- Virginia H Huxley
- Center for Gender Physiology, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA.
| | - Scott S Kemp
- Center for Gender Physiology, Department of Medical Pharmacology and Physiology, School of Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
10
|
Siamwala JH, Macias BR, Lee PC, Hargens AR. Gender differences in tibial microvascular flow responses to head down tilt and lower body negative pressure. Physiol Rep 2017; 5:5/4/e13143. [PMID: 28242824 PMCID: PMC5328775 DOI: 10.14814/phy2.13143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 01/05/2017] [Accepted: 01/08/2017] [Indexed: 11/24/2022] Open
Abstract
The purpose of the investigation was to study lower body negative pressure recovery in response to head down tilt position in men and women. The study examined the primary hypothesis that tibial bone microvascular flow responses to HDT and lower body negative pressure (LBNP) differ in women and men. Nine women and nine men between 20 to 30 years of age participated in the study. Tibial microvascular flow, head and tibial oxygenation and calf circumference were measured using photoplethysmography (PPG), near‐infrared spectroscopy (NIRS) and strain gauge plethysmography (SGP), respectively, during sitting (control baseline), supine, 15° HDT, and 15° HDT with 25 mmHg LBNP. Tibial microvascular flow with HDT increased by 57% from supine position (from 1.4V ± 0.7 to 2.2V ± 1.0 HDT; ANOVA P < 0.05) in men but there is no significant difference between supine and HDT in women. Ten minutes of LBNP during 15oHDT restored tibial bone microvascular flows to supine levels, (from 2.2V±1.0 HDT to 1.1V ± 0.7 supine; ANOVA P < 0.05) in men but not in women. These data support the concept that there are gender specific microvascular responses to a fluid‐shift countermeasure such as LBNP. Thus, gender differences should be considered while developing future countermeasure strategies to headward fluid shifts in microgravity.
Collapse
Affiliation(s)
- Jamila H Siamwala
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Brandon R Macias
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Paul C Lee
- Department of Orthopedic Surgery, University of California, San Diego, California
| | - Alan R Hargens
- Department of Orthopedic Surgery, University of California, San Diego, California
| |
Collapse
|