1
|
Hotta H, Iimura K, Watanabe N, Shigemoto K. Maintenance of contractile force of the hind limb muscles by the somato-lumbar sympathetic reflexes. J Physiol Sci 2021; 71:15. [PMID: 34020583 PMCID: PMC10717212 DOI: 10.1186/s12576-021-00799-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/29/2021] [Indexed: 11/10/2022]
Abstract
This study aimed to clarify whether the reflex excitation of muscle sympathetic nerves induced by contractions of the skeletal muscles modulates their contractility. In anesthetized rats, isometric tetanic contractions of the triceps surae muscles were induced by electrical stimulation of the intact tibial nerve before and after transection of the lumbar sympathetic trunk (LST), spinal cord, or dorsal roots. The amplitude of the tetanic force (TF) was reduced by approximately 10% at 20 min after transection of the LST, spinal cord, or dorsal roots. The recorded postganglionic sympathetic nerve activity from the lumbar gray ramus revealed that both spinal and supraspinal reflexes were induced in response to the contractions. Repetitive electrical stimulation of the cut peripheral end of the LST increased the TF amplitude. Our results indicated that the spinal and supraspinal somato-sympathetic nerve reflexes induced by contractions of the skeletal muscles contribute to the maintenance of their own contractile force.
Collapse
Affiliation(s)
- Harumi Hotta
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan.
| | - Kaori Iimura
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Nobuhiro Watanabe
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Kazuhiro Shigemoto
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, 173-0015, Japan
| |
Collapse
|
2
|
Kaufman CD, Liu SC, Cvetkovic C, Lee CA, Naseri Kouzehgarani G, Gillette R, Bashir R, Gillette MU. Emergence of functional neuromuscular junctions in an engineered, multicellular spinal cord-muscle bioactuator. APL Bioeng 2020; 4:026104. [PMID: 32548540 PMCID: PMC7190368 DOI: 10.1063/1.5121440] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 03/26/2020] [Indexed: 01/25/2023] Open
Abstract
Three-dimensional (3D) biomimetic systems hold great promise for the study of biological systems in vitro as well as for the development and testing of pharmaceuticals. Here, we test the hypothesis that an intact segment of lumbar rat spinal cord will form functional neuromuscular junctions (NMJs) with engineered, 3D muscle tissue, mimicking the partial development of the peripheral nervous system (PNS). Muscle tissues are grown on a 3D-printed polyethylene glycol (PEG) skeleton where deflection of the backbone due to muscle contraction causes the displacement of the pillar-like "feet." We show that spinal cord explants extend a robust and complex arbor of motor neurons and glia in vitro. We then engineered a "spinobot" by innervating the muscle tissue with an intact segment of lumbar spinal cord that houses the hindlimb locomotor central pattern generator (CPG). Within 7 days of the spinal cord being introduced to the muscle tissue, functional neuromuscular junctions (NMJs) are formed, resulting in the development of an early PNS in vitro. The newly innervated muscles exhibit spontaneous contractions as measured by the displacement of pillars on the PEG skeleton. Upon chemical excitation, the spinal cord-muscle system initiated muscular twitches with a consistent frequency pattern. These sequences of contraction/relaxation suggest the action of a spinal CPG. Chemical inhibition with a blocker of neuronal glutamate receptors effectively blocked contractions. Overall, these data demonstrate that a rat spinal cord is capable of forming functional neuromuscular junctions ex vivo with an engineered muscle tissue at an ontogenetically similar timescale.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - M. U. Gillette
- Author to whom correspondence should be addressed:. Tel.: 217-244-1355
| |
Collapse
|
3
|
Schmoll M, Unger E, Sutherland H, Haller M, Bijak M, Lanmüller H, Jarvis JC. SpillOver stimulation: A novel hypertrophy model using co-contraction of the plantar-flexors to load the tibial anterior muscle in rats. PLoS One 2018; 13:e0207886. [PMID: 30458051 PMCID: PMC6245836 DOI: 10.1371/journal.pone.0207886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/07/2018] [Indexed: 01/22/2023] Open
Abstract
The influence of loading on muscular hypertrophy has previously been studied in rodents by removal of synergistic muscles or various weight-lifting regimes. We present a novel model, evoking hypertrophy in the rat's tibialis anterior (TA) muscle by means of an implanted single channel electrical nerve stimulator. The amount of load experienced by the TA was measured in acute experiments in anaesthetized rats with contractions over a range of stimulation frequency and amplitude. A novel electrode configuration allowed us to elicit concentric, isometric and eccentric contractions within the same setup. This was achieved by 'SpillOver' stimulation in which we adjusted the amount of co-activation of the stronger antagonistic plantarflexors by increasing the stimulus above the level that caused full recruitment of the dorsiflexor muscles. The effect of loading on hypertrophy of the TA was tested in 3-4 week stimulation experiments in two groups of freely-moving rats, with a protocol that resembles typical resistance-training in humans. One group performed concentric contractions with no antagonistic co-contraction (unloaded, UNL, n = 5). In the other group the TA was loaded by simultaneous co-contraction of the antagonistically acting plantarflexors (SpillOver, n = 5). The wet mass of the stimulated TA increased in both groups; by 5.4 ± 5.5% for the UNL-group and 13.9 ± 2.9% for the SpillOver-group, with significantly greater increase in the SpillOver-group (p<0.05). Our results correlate well with values reported in literature, demonstrating that SpillOver-stimulation is a suitable model in which to study muscular hypertrophy. Even higher gains in muscle-mass may be possible by optimizing and adjusting the stimulation parameters according to the principles of progressive resistance training.
Collapse
Affiliation(s)
- Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: (MS); (JCJ)
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hazel Sutherland
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Michael Haller
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Manfred Bijak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hermann Lanmüller
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Jonathan Charles Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: (MS); (JCJ)
| |
Collapse
|
4
|
Schmoll M, Unger E, Bijak M, Stoiber M, Lanmüller H, Jarvis JC. A novel miniature in-line load-cell to measure in-situ tensile forces in the tibialis anterior tendon of rats. PLoS One 2017; 12:e0185209. [PMID: 28934327 PMCID: PMC5608493 DOI: 10.1371/journal.pone.0185209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 09/10/2017] [Indexed: 11/19/2022] Open
Abstract
Direct measurements of muscular forces usually require a substantial rearrangement of the biomechanical system. To circumvent this problem, various indirect techniques have been used in the past. We introduce a novel direct method, using a lightweight (~0.5 g) miniature (3 x 3 x 7 mm) in-line load-cell to measure tension in the tibialis anterior tendon of rats. A linear motor was used to produce force-profiles to assess linearity, step-response, hysteresis and frequency behavior under controlled conditions. Sensor responses to a series of rectangular force-pulses correlated linearly (R2 = 0.999) within the range of 0–20 N. The maximal relative error at full scale (20 N) was 0.07% of the average measured signal. The standard deviation of the mean response to repeated 20 N force pulses was ± 0.04% of the mean response. The step-response of the load-cell showed the behavior of a PD2T2-element in control-engineering terminology. The maximal hysteretic error was 5.4% of the full-scale signal. Sinusoidal signals were attenuated maximally (-4 dB) at 200 Hz, within a measured range of 0.01–200 Hz. When measuring muscular forces this should be of minor concern as the fusion-frequency of muscles is generally much lower. The newly developed load-cell measured tensile forces of up to 20 N, without inelastic deformation of the sensor. It qualifies for various applications in which it is of interest directly to measure forces within a particular tendon causing only minimal disturbance to the biomechanical system.
Collapse
Affiliation(s)
- Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel, Vienna, Austria
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: (MS); (JCJ)
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel, Vienna, Austria
| | - Manfred Bijak
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel, Vienna, Austria
| | - Martin Stoiber
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel, Vienna, Austria
| | - Hermann Lanmüller
- Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Waehringer Guertel, Vienna, Austria
| | - Jonathan Charles Jarvis
- School of Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: (MS); (JCJ)
| |
Collapse
|
5
|
Schmoll M, Unger E, Sutherland H, Haller M, Bijak M, Lanmüller H, Jarvis JC. In-situ measurements of tensile forces in the tibialis anterior tendon of the rat in concentric, isometric, and resisted co-contractions. Physiol Rep 2017; 5:e13245. [PMID: 28420761 PMCID: PMC5408282 DOI: 10.14814/phy2.13245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/16/2017] [Accepted: 03/16/2017] [Indexed: 11/24/2022] Open
Abstract
Tensile-force transmitted by the tibialis anterior (TA) tendon of 11 anesthetized adult male Wistar rats (body-mass: 360.6 ± 66.3 g) was measured in-situ within the intact biomechanical system of the hind-limb using a novel miniature in-line load-cell. The aim was to demonstrate the dependence of the loading-profile experienced by the muscle, on stimulation-frequency and the resistance to shortening in a group of control-animals. Data from these acute-experiments shows the type of loading achievable by means of implantable electrical stimulators activating agonists or agonist/antagonist groups of muscles during programmed resistance-training in freely moving healthy subjects. Force-responses to electrical stimulation of the common peroneal nerve for single pulses and short bursts were measured in unloaded and isometric contractions. A less time-consuming approach to measure the force-frequency relationship was investigated by applying single bursts containing a series of escalating stimulus-frequencies. We also measured the range of loading attainable by programmed co-contraction of the TA-muscle with the plantar-flexor muscles for various combinations of stimulation-frequencies. The maximal average peak-force of single twitches was 179% higher for isometric than for unloaded twitches. Average maximal isometric tetanic-force per gramme muscle-mass was 16.5 ± 3.0 N g-1, which agrees well with other studies. The standard and time-saving approaches to measure the force-frequency relationship gave similar results. Plantar-flexor co-activation produced greatly increased tension in the TA-tendon, similar to isometric contractions. Our results suggest that unloaded contractions may not be adequate for studies of resistance-training. Plantar-flexor co-contractions produced considerably higher force-levels that may be better suited to investigate the physiology and cell-biology of resistance-training in rodents.
Collapse
Affiliation(s)
- Martin Schmoll
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
- School of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Ewald Unger
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hazel Sutherland
- School of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| | - Michael Haller
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Manfred Bijak
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Hermann Lanmüller
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Jonathan C Jarvis
- School of Sport and Exercise Science, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|