1
|
Das P, Chakrabarti O. ISGylation of DRP1 closely balances other post-translational modifications to mediate mitochondrial fission. Cell Death Dis 2024; 15:184. [PMID: 38431611 PMCID: PMC10908869 DOI: 10.1038/s41419-024-06543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Dynamin related protein 1 (DRP1), a pivotal mitochondrial fission protein, is post-translationally modified by multiple mechanisms. Here we identify a new post-translational modification of DRP1 by the ubiquitin-like protein, interferon-stimulated gene 15 (ISG15). DRP1 ISGylation is mediated by ISG15 E3 ligase, HERC5; this promotes mitochondrial fission. DeISGylation of DRP1 however leads to hyperfusion. Heterologous expression of SARS-CoV2 PLpro, a deISGylating enzyme, results in similar mitochondrial filamentation, significant decrease in total DRP1 protein levels and efflux of mtDNA. We report that deISGylated DRP1 gets ubiquitylated and degraded by TRIM25, instead of PARKIN and MITOL. While the cytosolic pool of DRP1 is primarily ISGylated, both mitochondrial and cytosolic fractions may be ubiquitylated. It is known that phosphorylation of DRP1 at S616 residue regulates its mitochondrial localisation; we show that ISGylation of phospho-DRP1 (S616) renders fission competence at mitochondria. This is significant because DRP1 ISGylation affects its functionality and mitochondrial dynamics in Alzheimer's disease pathophysiology.
Collapse
Affiliation(s)
- Palamou Das
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhabha National Institute, Mumbai, India
| | - Oishee Chakrabarti
- Biophysics & Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
2
|
Su CT, See DHW, Huang YJ, Jao TM, Liu SY, Chou CY, Lai CF, Lin WC, Wang CY, Huang JW, Hung KY. LTBP4 Protects Against Renal Fibrosis via Mitochondrial and Vascular Impacts. Circ Res 2023; 133:71-85. [PMID: 37232163 DOI: 10.1161/circresaha.123.322494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
BACKGROUND As a part of natural disease progression, acute kidney injury (AKI) can develop into chronic kidney disease via renal fibrosis and inflammation. LTBP4 (latent transforming growth factor beta binding protein 4) regulates transforming growth factor beta, which plays a role in renal fibrosis pathogenesis. We previously investigated the role of LTBP4 in chronic kidney disease. Here, we examined the role of LTBP4 in AKI. METHODS LTBP4 expression was evaluated in human renal tissues, obtained from healthy individuals and patients with AKI, using immunohistochemistry. LTBP4 was knocked down in both C57BL/6 mice and human renal proximal tubular cell line HK-2. AKI was induced in mice and HK-2 cells using ischemia-reperfusion injury and hypoxia, respectively. Mitochondrial division inhibitor 1, an inhibitor of DRP1 (dynamin-related protein 1), was used to reduce mitochondrial fragmentation. Gene and protein expression were then examined to assess inflammation and fibrosis. The results of bioenergetic studies for mitochondrial function, oxidative stress, and angiogenesis were assessed. RESULTS LTBP4 expression was upregulated in the renal tissues of patients with AKI. Ltbp4-knockdown mice showed increased renal tissue injury and mitochondrial fragmentation after ischemia-reperfusion injury, as well as increased inflammation, oxidative stress, and fibrosis, and decreased angiogenesis. in vitro studies using HK-2 cells revealed similar results. The energy profiles of Ltbp4-deficient mice and LTBP4-deficient HK-2 cells indicated decreased ATP production. LTBP4-deficient HK-2 cells exhibited decreased mitochondrial respiration and glycolysis. Human aortic endothelial cells and human umbilical vein endothelial cells exhibited decreased angiogenesis when treated with LTBP4-knockdown conditioned media. Mitochondrial division inhibitor 1 treatment ameliorated inflammation, oxidative stress, and fibrosis in mice and decreased inflammation and oxidative stress in HK-2 cells. CONCLUSIONS Our study is the first to demonstrate that LTBP4 deficiency increases AKI severity, consequently leading to chronic kidney disease. Potential therapies focusing on LTBP4-associated angiogenesis and LTBP4-regulated DRP1-dependent mitochondrial division are relevant to renal injury.
Collapse
Affiliation(s)
- Chi-Ting Su
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Daniel H W See
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Yue-Jhu Huang
- Department of Medicine, National Taiwan University Cancer Center Hospital, Taipei (C.-T.S., D.H.W.S., Y.-J.H.)
| | - Tzu-Ming Jao
- Global Innovation Joint-Degree Program International Joint Degree Master's Program in Agro-Biomedical Science in Food and Health, College of Medicine, National Taiwan University, Taipei (T.-M.J.)
| | - Shin-Yun Liu
- Liver Disease Prevention and Treatment Research Foundation, Taipei, Taiwan (S.-Y.L.)
| | - Chih-Yi Chou
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Division of Endocrinology and Metabolism, Department of Internal Medicine, College of Medicine, National Taiwan University Hospital, National Taiwan University, Taipei (C.-Y.W.)
| | - Chun-Fu Lai
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Renal Division, Department of Internal Medicine (C.-F.L.), National Taiwan University Hospital, Taipei
| | - Wei-Chou Lin
- Department of Pathology (W.-C.L.), National Taiwan University Hospital, Taipei
| | - Chih-Yuan Wang
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| | - Jenq-Wen Huang
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
- Renal Division, Department of Internal Medicine, National Taiwan University Yunlin Branch, Douliu (J.-W.H.)
| | - Kuan-Yu Hung
- National Taiwan University College of Medicine, Taipei (C.-T.S., D.H.W.S., C.-Y.C., C.-F.L., W.-C.L., C.-Y.W., J.-W.H., K.-Y.H.)
| |
Collapse
|
3
|
Ranjbar K. Improved Cardiac Function Following Ischemia Reperfusion Injury Using Exercise Preconditioning and L-Arginine Supplementation via Oxidative Stress Mitigation and Angiogenesis Amelioration. Cardiovasc Toxicol 2022; 22:736-745. [DOI: 10.1007/s12012-022-09752-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/06/2022] [Indexed: 11/30/2022]
|
4
|
Xin Y, Zhang X, Li J, Gao H, Li J, Li J, Hu W, Li H. New Insights Into the Role of Mitochondria Quality Control in Ischemic Heart Disease. Front Cardiovasc Med 2021; 8:774619. [PMID: 34901234 PMCID: PMC8661033 DOI: 10.3389/fcvm.2021.774619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023] Open
Abstract
IHD is a significant cause of mortality and morbidity worldwide. In the acute phase, it's demonstrated as myocardial infarction and ischemia-reperfusion injury, while in the chronic stage, the ischemic heart is mainly characterised by adverse myocardial remodelling. Although interventions such as thrombolysis and percutaneous coronary intervention could reduce the death risk of these patients, the underlying cellular and molecular mechanisms need more exploration. Mitochondria are crucial to maintain the physiological function of the heart. During IHD, mitochondrial dysfunction results in the pathogenesis of ischemic heart disease. Ischemia drives mitochondrial damage not only due to energy deprivation, but also to other aspects such as mitochondrial dynamics, mitochondria-related inflammation, etc. Given the critical roles of mitochondrial quality control in the pathological process of ischemic heart disease, in this review, we will summarise the efforts in targeting mitochondria (such as mitophagy, mtROS, and mitochondria-related inflammation) on IHD. In addition, we will briefly revisit the emerging therapeutic targets in this field.
Collapse
Affiliation(s)
- Yanguo Xin
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Zhang
- General Surgery Department, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jingye Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hui Gao
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jiayu Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Junli Li
- Laboratory of Heart Valve Disease, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyu Hu
- Department of Cardiology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hongwei Li
- Department of Cardiology, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Beijing, China.,Department of Geriatrics, Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
5
|
Jiang C, Zhang J, Xie H, Guan H, Li R, Chen C, Dong H, Zhou Y, Zhang W. Baicalein suppresses lipopolysaccharide-induced acute lung injury by regulating Drp1-dependent mitochondrial fission of macrophages. Biomed Pharmacother 2021; 145:112408. [PMID: 34801855 DOI: 10.1016/j.biopha.2021.112408] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 11/03/2021] [Indexed: 12/22/2022] Open
Abstract
Acute lung injury (ALI) and its serious form, the acute respiratory distress syndrome (ARDS) are devastating diseases without effective chemotherapy. Exuberant or uncontrolled proinflammation responses in the lung, also known as "cytokine storms", is one of the main culprits in the pathogenesis of organ failure, and anti-inflammatory therapy is essential to alleviate ALI/ARDS-associated injuries. Emerging evidence suggests that baicalein has potent anti-inflammatory and antioxidant properties. However, the underlined mechanism of baicalein to mitigate inflammation in ALI remains unclear. Herein, we demonstrated a critical role for baicalein in suppressing the inflammatory response of LPS-activated macrophages. We found that mitochondria function was restored in the condition of baicalein. Interestingly, results showed that mitochondrial dysfunction positively correlates with inflammatory cytokine generation at each corresponding baicalein concentration. Further mRNA analysis revealed that baicalein mitigates mitochondrial defects via attenuation of dynamin-related protein 1 (Drp1) expression. These reprogrammed mitochondria prevent their function shift from the ATP synthesis to reactive oxygen species (ROS) production after the LPS challenge, thereby dampening NF-κB-dependent inflammatory cytokine transcription. Baicalein reduces the production of inflammatory mediators TNF-α, MIP-1, IL-6, and diminishes neutrophil influx and severity of endotoxin-mediated ALI. Taken together, our results show that baicalein may serve as a new clinical therapeutic strategy in ALI by modulating Drp1-induced mitochondrial impairment, restraining inflammatory responses, and reducing the severity of lung injury.
Collapse
Affiliation(s)
- Cheng Jiang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiechun Zhang
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiwen Xie
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Huiting Guan
- Research Center for Integrative Medicine of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Rui Li
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Caixia Chen
- Xiaokunshan Community Health Service Center of Songjiang District, Shanghai, China
| | - Hongzhen Dong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - You Zhou
- State Key Laboratory of Respiratory, Guangzhou Institute of Respiratory Health, Guangzhou, Guangdong, China.
| | - Wei Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Li B, Yu J, Liu P, Zeng T, Zeng X. Astragaloside IV protects cardiomyocytes against hypoxia injury via HIF-1α and the JAK2/STAT3 pathway. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1435. [PMID: 34733987 PMCID: PMC8506767 DOI: 10.21037/atm-21-4080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/18/2021] [Indexed: 01/08/2023]
Abstract
Background Hypoxia is an important cause of myocardial injury due to the heart’s high susceptibility to hypoxia. Astragaloside IV (AS-IV) is the main component of Astragalus membranaceus and could exert cardiac protective role. Here, the effect of AS-IV on hypoxia-injured H9c2 cardiomyocytes was elucidated. Methods First, H9c2 cells were exposed to hypoxia and/or AS-IV treatment. Cell apoptosis, death, and viability as well as hypoxia-inducible factor 1α (HIF-1α) expression and apoptotic proteins were analyzed. Next, transfection of si-HIF-1α into H9c2 cells was carried out to test whether upregulation and stabilization of HIF-1α influences the effect of AS-IV on hypoxia-treated H9c2 cells. Furthermore, the regulatory role of Janus kinase 2/signal transducer and activator of transcription 3 (JAK2/STAT3) signaling on HIF-1α levels was examined. Results Hypoxia suppressed viability and promoted the apoptosis and death of H9c2 cells. AS-IV eliminated hypoxia-induced H9c2 injury. Moreover, HIF-1α signaling was further activated and stabilized by AS-IV in hypoxia-challenged H9c2 cells. Downregulation of HIF-1α suppressed the function of AS-IV in hypoxia-challenged H9c2 cells. AS-IV promoted JAK2/STAT3 signaling in hypoxia-induced injury. The beneficial functions of AS-IV in hypoxia-exposed H9c2 cells were linked to HIF-1α upregulation and JAK2/STAT3 signaling activation. Conclusions AS-IV relieved H9c2 cardiomyocyte injury after hypoxia, possibly by activating JAK2/STAT3-mediated HIF-1α signaling.
Collapse
Affiliation(s)
- Bei Li
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Junjian Yu
- Cardiovascular and Thoracis Surgery Department 2, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Peipei Liu
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Taohui Zeng
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xueliang Zeng
- Department of Pharmacy, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
7
|
Vitexin Mitigates Myocardial Ischemia/Reperfusion Injury in Rats by Regulating Mitochondrial Dysfunction via Epac1-Rap1 Signaling. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9921982. [PMID: 34257823 PMCID: PMC8260301 DOI: 10.1155/2021/9921982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/18/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022]
Abstract
Revascularization is an effective therapy for rescuing myocardial tissue after ischemic events. However, the process of reperfusion can lead to more severe cardiomyocyte damage, called myocardial ischemia-reperfusion (I/R) injury (MIRI). We have previously shown that vitexin (VT) (a flavonoid compound derived from natural products) protects against MIRI; however, the exact mechanisms underpinning this effect require further elucidation. This study is aimed at elucidating the protective mechanism of VT in inhibiting ischemic myocardial mitochondrial dysfunction and reducing cardiomyocyte apoptosis by regulating Epac1-Rap1 signaling. Isolated rat hearts were subjected to MIRI in a Langendorff perfusion system, and H9c2 cells were subjected to hypoxia/reoxygenation (H/R) in vitro. Our analyses show that during I/R, Epac1 expression was upregulated, left ventricular dysfunction deteriorated, mitochondrial dynamics were disrupted, and both myocardial cells and tissues exhibited apoptosis. Furthermore, administration of 8-CPT (an Epac agonist) exacerbated cardiomyocyte injury and mitochondrial dysfunction. Interestingly, suppressing the function of Epac1 through VT or ESI-09 (an Epac inhibitor) treatment during I/R reduced the myocardial infarct size, cardiomyocyte apoptosis, and reactive oxygen species production; alleviated mitochondrial dysfunction by increasing mitochondrial membrane potential; elevated MFN2 expression; and inhibited Drp1 expression. To our knowledge, our results reveal, for the first time, the mechanisms underlying the protective effect of VT in the myocardium of rats with MIRI. Moreover, we provide a new target and theoretical basis for VT in the treatment of ischemic heart disease.
Collapse
|
8
|
Chang X, Lochner A, Wang HH, Wang S, Zhu H, Ren J, Zhou H. Coronary microvascular injury in myocardial infarction: perception and knowledge for mitochondrial quality control. Am J Cancer Res 2021; 11:6766-6785. [PMID: 34093852 PMCID: PMC8171103 DOI: 10.7150/thno.60143] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
Endothelial cells (ECs) constitute the innermost layer in all blood vessels to maintain the structural integrity and microcirculation function for coronary microvasculature. Impaired endothelial function is demonstrated in various cardiovascular diseases including myocardial infarction (MI), which is featured by reduced myocardial blood flow as a result of epicardial coronary obstruction, thrombogenesis, and inflammation. In this context, understanding the cellular and molecular mechanisms governing the function of coronary ECs is essential for the early diagnosis and optimal treatment of MI. Although ECs contain relatively fewer mitochondria compared with cardiomyocytes, they function as key sensors of environmental and cellular stress, in the regulation of EC viability, structural integrity and function. Mitochondrial quality control (MQC) machineries respond to a broad array of stress stimuli to regulate fission, fusion, mitophagy and biogenesis in mitochondria. Impaired MQC is a cardinal feature of EC injury and dysfunction. Hence, medications modulating MQC mechanisms are considered as promising novel therapeutic options in MI. Here in this review, we provide updated insights into the key role of MQC mechanisms in coronary ECs and microvascular dysfunction in MI. We also discussed the option of MQC as a novel therapeutic target to delay, reverse or repair coronary microvascular damage in MI. Contemporary available MQC-targeted therapies with potential clinical benefits to alleviate coronary microvascular injury during MI are also summarized.
Collapse
|
9
|
Singh A, Faccenda D, Campanella M. Pharmacological advances in mitochondrial therapy. EBioMedicine 2021; 65:103244. [PMID: 33647769 PMCID: PMC7920826 DOI: 10.1016/j.ebiom.2021.103244] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/21/2021] [Accepted: 01/29/2021] [Indexed: 02/06/2023] Open
Abstract
Mitochondria play a vital role in cellular metabolism and are central mediator of intracellular signalling, cell differentiation, morphogenesis and demise. An increasingly higher number of pathologies is linked with mitochondrial dysfunction, which can arise from either genetic defects affecting core mitochondrial components or malfunctioning pathways impairing mitochondrial homeostasis. As such, mitochondria are considered an important target in several pathologies spanning from neoplastic to neurodegenerative diseases as well as metabolic syndromes. In this review we provide an overview of the state-of-the-art in mitochondrial pharmacology, focusing on the novel compounds that have been generated in the bid to correct mitochondrial aberrations. Our work aims to serve the scientific community working on translational medical science by highlighting the most promising pharmacological approaches to target mitochondrial dysfunction in disease.
Collapse
Affiliation(s)
- Aarti Singh
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom
| | - Danilo Faccenda
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom
| | - Michelangelo Campanella
- Department of Comparative Biomedical Sciences, The Royal Veterinary College, University of London, 4 Royal College Street, NW1 0TU, London, United Kingdom; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, United Kingdom; Department of Biology, University of Rome TorVergata, Via della Ricerca Scientifica, Rome, 00133, Italy.
| |
Collapse
|
10
|
Marin W, Marin D, Ao X, Liu Y. Mitochondria as a therapeutic target for cardiac ischemia‑reperfusion injury (Review). Int J Mol Med 2020; 47:485-499. [PMID: 33416090 PMCID: PMC7797474 DOI: 10.3892/ijmm.2020.4823] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Acute myocardial infarction is the leading cause of cardiovascular-related mortality and chronic heart failure worldwide. As regards treatment, the reperfusion of ischemic tissue generates irreversible damage to the myocardium, which is termed 'cardiac ischemia-reperfusion (IR) injury'. Due to the large number of mitochondria in cardiomyocytes, an increasing number of studies have focused on the roles of mitochondria in IR injury. The primary causes of IR injury are reduced oxidative phosphorylation during hypoxia and the increased production of reactive oxygen species (ROS), together with the insufficient elimination of these oxidative species following reperfusion. IR injury includes the oxidation of DNA, incorrect modifications of proteins, the disruption of the mitochondrial membrane and respiratory chain, the loss of mitochondrial membrane potential (∆Ψm), Ca2+ over-load, mitochondrial permeability transition pore formation, swelling of the mitochondria, and ultimately, cardiomyocyte necrosis. The present review article discusses the molecular mechanisms of IR injury, and summarizes the metabolic and dynamic changes occurring in the mitochondria in response to IR stress. The mitochondria are strongly recommended as a target for the development of therapeutic agents; however, the appropriate use of agents remains a challenge.
Collapse
Affiliation(s)
- Wenwen Marin
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Dennis Marin
- Qingdao University of Science and Technology, Qingdao, Shandong 266061, P.R. China
| | - Xiang Ao
- School of Basic Medical Sciences, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
11
|
Chen Y, Guo S, Tang Y, Mou C, Hu X, Shao F, Yan W, Wu Q. Mitochondrial Fusion and Fission in Neuronal Death Induced by Cerebral Ischemia-Reperfusion and Its Clinical Application: A Mini-Review. Med Sci Monit 2020; 26:e928651. [PMID: 33156817 PMCID: PMC7654336 DOI: 10.12659/msm.928651] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are highly dynamic organelles which are joined by mitochondrial fusion and divided by mitochondrial fission. The balance of mitochondrial fusion and fission plays a critical role in maintaining the normal function of neurons, of which the processes are both mediated by several proteins activated by external stimulation. Cerebral ischemia-reperfusion (I/R) injury can disrupt the balance of mitochondrial fusion and fission through regulating the expression and post-translation modification of fusion- and fission-related proteins, thereby destroying homeostasis of the intracellular environment and causing neuronal death. Furthermore, human intervention in fusion- and fission-related proteins can influence the function of neurons and change the outcomes of cerebral I/R injury. In recent years, researchers have found that mitochondrial dysfunction was one of the main factors involved in I/R, and mitochondria is an attractive target in I/R neuroprotection. Therefore, mitochondrial-targeted therapy of the nervous system for I/R gradually started from basic study to clinical application. In the present review, we highlight recent progress in mitochondria fusion and fission in neuronal death induced by cerebral I/R to help understanding the regulatory factors and signaling networks of aberrant mitochondrial fusion and fission contributing to neuronal death during I/R, as well as the potential neuroprotective therapeutics targeting mitochondrial dynamics, which may help clinical treatment and development of relevant dugs.
Collapse
Affiliation(s)
- Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Yajuan Tang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Chaohui Mou
- Department of Neurosurgery, Taizhou First People's Hospital, Taizhou, Zhejiang, China (mainland)
| | - Xinben Hu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Fangjie Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Wei Yan
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| | - Qun Wu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
12
|
Li W, Kui L, Demetrios T, Gong X, Tang M. A Glimmer of Hope: Maintain Mitochondrial Homeostasis to Mitigate Alzheimer's Disease. Aging Dis 2020; 11:1260-1275. [PMID: 33014536 PMCID: PMC7505280 DOI: 10.14336/ad.2020.0105] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Accepted: 01/05/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are classically known to be cellular energy producers. Given the high-energy demanding nature of neurons in the brain, it is essential that the mitochondrial pool remains healthy and provides a continuous and efficient supply of energy. However, mitochondrial dysfunction is inevitable in aging and neurodegenerative diseases. In Alzheimer’s disease (AD), neurons experience unbalanced homeostasis like damaged mitochondrial biogenesis and defective mitophagy, with the latter promoting the disease-defining amyloid β (Aβ) and p-Tau pathologies impaired mitophagy contributes to inflammation and the aggregation of Aβ and p-Tau-containing neurotoxic proteins. Interventions that restore defective mitophagy may, therefore, alleviate AD symptoms, pointing out the possibility of a novel therapy. This review aims to illustrate mitochondrial biology with a focus on mitophagy and propose strategies to treat AD while maintaining mitochondrial homeostasis.
Collapse
Affiliation(s)
- Wenbo Li
- 1State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, China
| | - Ling Kui
- 2Dana-Farber Cancer Institute, Harvard Medical School, United States
| | | | - Xun Gong
- 4Department of Rheumatology & Immunology, The First Affiliated Hospital of Anhui Medical University, China
| | - Min Tang
- 5Institute of Life Sciences, Jiangsu University, China.,6Center for Innovation in Brain Science, University of Arizona, United States
| |
Collapse
|
13
|
Duan C, Wang L, Zhang J, Xiang X, Wu Y, Zhang Z, Li Q, Tian K, Xue M, Liu L, Li T. Mdivi-1 attenuates oxidative stress and exerts vascular protection in ischemic/hypoxic injury by a mechanism independent of Drp1 GTPase activity. Redox Biol 2020; 37:101706. [PMID: 32911435 PMCID: PMC7490562 DOI: 10.1016/j.redox.2020.101706] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Vascular dysfunctions such as vascular hyporeactivity following ischemic/hypoxic injury are a major cause of death in injured patients. In this study, we showed that treatment with mitochondrial division inhibitor 1 (Mdivi-1), a selective inhibitor of dynamin-related protein 1 (Drp1), significantly improved vascular reactivity in ischemic rats by attenuating oxidative stress. The antioxidative effects of Mdivi-1 were relatively Drp1-independent, and possibly due to an increase in the levels of the antioxidant enzymes, SOD1 and catalase, as well as to enhanced Nrf2 expression. In addition, we found that while Mdivi-1 had little effect on Drp1 GTPase activity in vascular smooth muscle cells, it inhibited hypoxia-induced Drp1 phosphorylation at Ser-616, reducing excessive mitochondrial fission and slightly enhancing mitochondrial fusion. These effects possibly contributed to vascular protection at an early stage of ischemic/hypoxic injury. Finally, Mdivi-1 stabilized hemodynamics, increased vital organ perfusion, and improved rat survival after ischemic/hypoxic injury, proving a promising therapeutic agent for ischemic/hypoxic injury. Mdivi-1 improved vascular contractility in ischemic rats. Mdivi-1 attenuated hypoxia-induced oxidative stress and mitochondrial changes. Drp1 recruitment to mitochondria, not GTPase activity, involved in Mdivi-1 effects. Mdivi-1 has therapeutic potential against ischemic injury.
Collapse
Affiliation(s)
- Chenyang Duan
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Li Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Jie Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Xinming Xiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Zisen Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Kunlun Tian
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Mingying Xue
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China.
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Second Department of Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, PR China.
| |
Collapse
|
14
|
Deng S, Zhang L, Mo Y, Huang Y, Li W, Peng Q, Huang L, Ai Y. Mdivi-1 attenuates lipopolysaccharide-induced acute lung injury by inhibiting MAPKs, oxidative stress and apoptosis. Pulm Pharmacol Ther 2020; 62:101918. [PMID: 32251714 DOI: 10.1016/j.pupt.2020.101918] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/12/2020] [Accepted: 04/01/2020] [Indexed: 01/23/2023]
Abstract
Sepsis is among the most devastating events in intensive care units. As a complication of sepsis, acute lung injury (ALI) is common and highly associated with poor outcome. The present study demonstrated that abnormal mitochondrial dynamics play a pivotal role in lipopolysaccharide (LPS)-induced ALI. Inhibiting the mitochondrial fission with the specific inhibitor-1 (Mdivi-1) ameliorated ALI as assessed by hematoxylin and eosin (H&E) staining and wet/dry ratio. Furthermore, Mdivi-1 reduced mitogen-activated protein kinases (MAPKs) activation, oxidative stress and apoptosis in the lungs. Plasma pro-inflammation cytokines were also reduced significantly in Mdivi-1-treated mice. In vitro study revealed that Mdivi-1 protected the macrophages from LPS-induced MAPKs activation, oxidative stress and cell apoptosis. Mdivi-1 also inhibited the release of pro-inflammatory cytokines. Morphological analysis showed that Mdivi-1 rescued the macrophages from LPS-induced mitochondrial fragmentation. Moreover, LPS treatment induced significant phosphorylation of Drp1 at Ser616, dephosphorylation at Ser637 and translocation of Drp1 from the cytoplasm to mitochondria, while Mdivi-1 inhibited those effects. Thus, modification of fission to rebuild mitochondrial homeostasis may offer an innovative opportunity for developing therapeutic strategies against ALI.
Collapse
Affiliation(s)
- Songyun Deng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Lina Zhang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Yunan Mo
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Yan Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Wenchao Li
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Qianyi Peng
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Li Huang
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Yuhang Ai
- Department of Critical Care Medicine, Xiangya Hospital, Central South University, Changsha, 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| |
Collapse
|
15
|
Wang J, Toan S, Zhou H. New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury. Angiogenesis 2020; 23:299-314. [PMID: 32246225 DOI: 10.1007/s10456-020-09720-2] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/30/2020] [Indexed: 12/19/2022]
Abstract
As reperfusion therapies have become more widely used in acute myocardial infarction patients, ischemia-induced myocardial damage has been markedly reduced, but reperfusion-induced cardiac injury has become increasingly evident. The features of cardiac ischemia-reperfusion (I/R) injury include microvascular perfusion defects, platelet activation and sequential cardiomyocyte death due to additional ischemic events at the reperfusion stage. Microvascular obstruction, defined as a no-reflow phenomenon, determines the infarct zone, myocardial function and peri-operative mortality. Cardiac microvascular endothelial cell injury may occur much earlier and with much greater severity than cardiomyocyte injury. Endothelial cells contain fewer mitochondria than other cardiac cells, and several of the pathological alterations during cardiac microvascular I/R injury involve mitochondria, such as increased mitochondrial reactive oxygen species (mROS) levels and disturbed mitochondrial dynamics. Although mROS are necessary physiological second messengers, high mROS levels induce oxidative stress, endothelial senescence and apoptosis. Mitochondrial dynamics, including fission, fusion and mitophagy, determine the shape, distribution, size and function of mitochondria. These adaptive responses modify extracellular signals and orchestrate intracellular processes such as cell proliferation, migration, metabolism, angiogenesis, permeability transition, adhesive molecule expression, endothelial barrier function and anticoagulation. In this review, we discuss the involvement of mROS and mitochondrial morphofunction in cardiac microvascular I/R injury.
Collapse
Affiliation(s)
- Jin Wang
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Hao Zhou
- Chinese PLA General Hospital, Medical School of Chinese PLA, Beijing, 100853, China. .,Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
16
|
Zhang R, Xue MY, Liu BS, Wang WJ, Fan XH, Zheng BY, Yuan QH, Xu F, Wang JL, Chen YG. Aldehyde dehydrogenase 2 preserves mitochondrial morphology and attenuates hypoxia/reoxygenation-induced cardiomyocyte injury. World J Emerg Med 2020; 11:246-254. [PMID: 33014221 DOI: 10.5847/wjem.j.1920-8642.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Disturbance of mitochondrial fission and fusion (termed mitochondrial dynamics) is one of the leading causes of ischemia/reperfusion (I/R)-induced myocardial injury. Previous studies showed that mitochondrial aldehyde dehydrogenase 2 (ALDH2) conferred cardioprotective effect against myocardial I/R injury and suppressed I/R-induced excessive mitophagy in cardiomyocytes. However, whether ALDH2 participates in the regulation of mitochondrial dynamics during myocardial I/R injury remains unknown. METHODS In the present study, we investigated the effect of ALDH2 on mitochondrial dynamics and the underlying mechanisms using the H9c2 cells exposed to hypoxia/reoxygenation (H/R) as an in vitro model of myocardial I/R injury. RESULTS Cardiomyocyte apoptosis was significantly increased after oxygen-glucose deprivation and reoxygenation (OGD/R), and ALDH2 activation largely decreased the cardiomyocyte apoptosis. Additionally, we found that both ALDH2 activation and overexpression significantly inhibited the increased mitochondrial fission after OGD/R. Furthermore, we found that ALDH2 dominantly suppressed dynamin-related protein 1 (Drp1) phosphorylation (Ser616) and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation (Thr172) but not interfered with the expression levels of mitochondrial shaping proteins. CONCLUSIONS We demonstrate the protective effect of ALDH2 against cardiomyocyte H/R injury with a novel mechanism on mitochondrial fission/fusion.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Meng-Yang Xue
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Bao-Shan Liu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Wen-Jun Wang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Xin-Hui Fan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Bo-Yuan Zheng
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Qiu-Huan Yuan
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Jia-Li Wang
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| | - Yu-Guo Chen
- Department of Emergency Medicine and Chest Pain Center, Qilu Hospital, Shandong University, Jinan, China.,Shandong Provincal Clinical Research Center for Emergency and Critical Care Medicine of Shandong Province, Institute of Emergency and Critical Care Medicine of Shandong University, Qilu Hospital, Shandong University, Jinan, China.,Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary- Cerebral Resuscitation Research of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.,The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences; the State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine; Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
17
|
Beljanski V, Grinnemo KH, Österholm C. Pleiotropic roles of autophagy in stem cell-based therapies. Cytotherapy 2019; 21:380-392. [PMID: 30876741 DOI: 10.1016/j.jcyt.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/25/2019] [Accepted: 02/19/2019] [Indexed: 02/07/2023]
Abstract
Stem cells (SCs) have been proven to possess regenerative and immunomodulatory properties and can be used to treat diseases that involve loss of cells due to tissue damage or inflammation. For this approach to succeed, SCs or their derivatives should be able to engraft in the target tissue at least for a short period of time. Unfortunately, once injected, therapeutic SCs will encounter a hostile environment, including hypoxia, lack of nutrients and stromal support, and cells may also be targeted and rejected by the immune system. Therefore, SC's stress-response mechanisms likely play a significant role in survival of injected cells and possibly contribute to their therapeutic efficacy. Autphagy, a stress-response pathway, is involved in many different cellular processes, such as survival during hypoxia and nutrient deprivation, cellular differentiation and de-differentiation, and it can also contribute to their immunovisibility by regulating antigen presentation and cytokine secretion. Autophagy machinery interacts with many proteins and signaling pathways that regulate SC properties, including PI3K/Akt, mammalian target of rapamycin (mTOR), Wnt, Hedgehog and Notch, and it is also involved in regulating intracellular reactive oxygen species (ROS) levels. In this review, we contend that autophagy is an important therapeutic target that can be used to improve the outcome of SC-based tissue repair and regeneration. Further research should reveal whether inhibition or stimulation of autophagy increases the therapeutic utility of SCs and it should also identify appropriate therapeutic regimens that can be applied in the clinic.
Collapse
Affiliation(s)
- Vladimir Beljanski
- NSU Cell Therapy Institute, Nova Southeastern University, Fort Lauderdale, Florida, USA.
| | - Karl-Henrik Grinnemo
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden; Department of Surgical Sciences, Division of Cardiothoracic Surgery and Anesthesiology, Uppsala University, Akademiska University Hospital, Uppsala, Sweden
| | - Cecilia Österholm
- Department of Molecular Medicine and Surgery, Division of Cardiothoracic Surgery and Anesthesiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
18
|
Differential temporal inhibition of mitochondrial fission by Mdivi-1 exerts effective cardioprotection in cardiac ischemia/reperfusion injury. Clin Sci (Lond) 2018; 132:1669-1683. [PMID: 30065084 DOI: 10.1042/cs20180510] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/28/2018] [Accepted: 07/31/2018] [Indexed: 12/26/2022]
Abstract
Altered cardiac mitochondrial dynamics with excessive fission is a predominant cause of cardiac dysfunction during ischemia/reperfusion (I/R) injury. Although pre-ischemic inhibition of mitochondrial fission has been shown to improve cardiac function in I/R injury, the effects of this inhibitor given at different time-points during cardiac I/R injury are unknown. Fifty male Wistar rats were subjected to sham and cardiac I/R injury. For cardiac I/R injury, rats were randomly divided into pre-ischemia, during-ischemia, and upon onset of reperfusion group. A mitochondrial fission inhibitor, Mdivi-1 (mitochondrial division inhibitor 1) (1.2 mg/kg) was used. During I/R protocols, the left ventricular (LV) function, arrhythmia score, and mortality rate were determined. Then, the heart was removed to determine infarct size, mitochondrial function, mitochondrial dynamics, and apoptosis. Our results showed that Mdivi-1 given prior to ischemia, exerted the highest level of cardioprotection quantitated through the attenuated incidence of arrhythmia, reduced infarct size, improved cardiac mitochondrial function and fragmentation, and decreased cardiac apoptosis, leading to preserved LV function during I/R injury. Mdivi-1 administered during ischemia and upon the onset of reperfusion also improved cardiac mitochondrial function and LV function, but at a lower efficacy than when it was given prior to ischemia. Taken together, mitochondrial fission inhibition after myocardial ischemic insults still exerts cardioprotection by attenuating mitochondrial dysfunction and dynamic imbalance, leading to decreased infarct size and ultimately improved LV function after acute cardiac I/R injury in rats. These findings indicate its potential clinical usefulness.
Collapse
|
19
|
Abstract
Several interventions, such as ischemic preconditioning, remote pre/perconditioning, or postconditioning, are known to decrease lethal myocardial ischemia-reperfusion injury. While several signal transduction pathways become activated by such maneuvers, they all have a common end point, namely, the mitochondria. These organelles represent an essential target of the cardioprotective strategies, and the preservation of mitochondrial function is central for the reduction of ischemia-reperfusion injury. In the present review, we address the role of mitochondria in the different conditioning strategies; in particular, we focus on alterations of mitochondrial function in terms of energy production, formation of reactive oxygen species, opening of the mitochondrial permeability transition pore, and mitochondrial dynamics induced by ischemia-reperfusion.
Collapse
Affiliation(s)
- Kerstin Boengler
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| | - Günter Lochnit
- Institute of Biochemistry, Justus-Liebig Universität , Giessen , Germany
| | - Rainer Schulz
- Institute of Physiology, Justus-Liebig Universität , Giessen , Germany
| |
Collapse
|
20
|
|
21
|
Veeranki S, Tyagi SC. Mdivi-1 induced acute changes in the angiogenic profile after ischemia-reperfusion injury in female mice. Physiol Rep 2018; 5:5/11/e13298. [PMID: 28576854 PMCID: PMC5471437 DOI: 10.14814/phy2.13298] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/03/2017] [Accepted: 05/04/2017] [Indexed: 01/04/2023] Open
Abstract
The aim of this study is to determine the effects of mitochondrial division inhibitor 1 (Mdivi‐1), the mitochondrial fission inhibitor, on the angiogenic profiles after the ischemia reperfusion injury (IR injury) in female mice. Female mice were treated with Mdivi‐1 inhibitor, 2 days prior, on the day of IR injury and 2 days after IR injury, for a period of 5 days. Both control and treatment groups underwent 30 min of ischemia and 72 h of reperfusion. On the day 3, mice were sacrificed and the ischemic and nonischemic portions of heart tissue were collected. Relative levels of 53 angiogenesis‐related proteins were quantified simultaneously using Angiogenic arrays. Heart function was evaluated before and after 72 h of IR injury. Mdivi‐1 treatment ameliorated IR induced functional deterioration with positive angiogenic profile. The seminal changes include suppression of Matrix metalloproteinase (MMP3), tissue inhibitor of metalloproteases (TIMP1) and chemokine (C‐X‐C motif) ligand 10 (CXCL10) levels and prevention of connexin 43 (Cx43) loss and downregulation in the antioxidant enzyme levels. These changes are correlated with enhanced endothelial progenitor cell marker (cluster of differentiation (CD31), endothelial‐specific receptor tyrosine kinase (Tek), fMS‐like tyrosine kinase 4 (Flt4) and kinase insert domain protein receptor (Kdr)) presence. Our study is the first to report the role of mitochondrial dynamics in regulation of myocardial IR‐induced angiogenic responses. Inhibition of excessive mitochondrial fission after IR injury ameliorated heart dysfunction and conferred positive angiogenic response. In addition, there were improvements in the preservation of Cx43 levels and oxidative stress handling along with suppression of apoptosis activation. The findings will aid in shaping the rational drug development process for the prevention of ischemic heart disease, especially in females.
Collapse
Affiliation(s)
- Sudhakar Veeranki
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Louisville, Kentucky, 40202
| |
Collapse
|
22
|
Li Y, Liu X. Novel insights into the role of mitochondrial fusion and fission in cardiomyocyte apoptosis induced by ischemia/reperfusion. J Cell Physiol 2018. [PMID: 29528108 DOI: 10.1002/jcp.26522] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
As the main source of energy in the body, mitochondria are highly dynamic organelles, which are constantly going through fusion and fission. The fine balance of mitochondrial fusion and fission plays an important role in maintaining the stability of cardiomyocyte homeostasis. The processes of mitochondrial fusion and fission are very complex, which is mediated by fusion and fission proteins. Disruptions in these processes through controlling fusion and fission proteins affect mitochondrial functions and cardiomyocyte survival. Ischemia/reperfusion (I/R) can regulate the expression and post-translational modifications of fusion and fission proteins thereby inducing the abnormality of mitochondrial fusion and fission and cardiomyocyte apoptosis. Furthermore, intervention with the expression and function of fusion and fission proteins influences on cardiomyocyte apoptosis under I/R conditions. In this review, we focus on the current developments in the effects of mitochondrial fusion and fission on cardiomyocyte functions, the implications for cardiomyocyte apoptosis in response to I/R, and possible mechanisms. And we review their roles as a potential therapeutic target for treating I/R-induced cardiomyocyte injury.
Collapse
Affiliation(s)
- YuZhen Li
- Department of Pathophysiology, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| | - XiuHua Liu
- Department of Pathophysiology, Institute of Basic Medical Science, PLA General Hospital, Beijing, China
| |
Collapse
|